www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Kompaktheit
Kompaktheit < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kompaktheit: Beispiele
Status: (Frage) beantwortet Status 
Datum: 15:42 Mi 09.11.2011
Autor: Bleistiftkauer

Aufgabe
(i) Finden sie eine Folge [mm] (x_{k}) [/mm] im [mm] \IR^{3}, [/mm] welche keine konvergente Teilfolge hat.

(ii) Finden Sie eine beschränkte Menge A [mm] \subset\IR^{2} [/mm] und eine Folge [mm] (x_{k}) [/mm] in A derart, dass [mm] (x_{k}) [/mm] keine in A konvergente Teilfolge besitzt.

(iii) (ii) Finden Sie eine abgeschlossene Menge A [mm] \subset \IR^{2} [/mm] und eine Folge [mm] (x_{k}) [/mm] in A derart, dass [mm] (x_{k}) [/mm] keine in A konvergente Teilfolge besitzt.




Ich habe folgende Beispiele gefunden, bei denen ich mich frage, ob sie richtig sind. Vllt könnte mir das einer sagen.

(i)  [mm] (x_{k}) [/mm] = [mm] \vektor{k \\ k \\ k} [/mm]
(ii) A = {(x,y)) [mm] \in \IR [/mm] | x > 0 [mm] \wedge [/mm] y>0}, [mm] (x_{k}) [/mm] = [mm] \vektor{x+k \\ y+k} [/mm]
(iii) A = {(x,y)) [mm] \in \IR [/mm] | 0 [mm] \le [/mm] x [mm] \le [/mm] 100 [mm] \wedge [/mm] 0 [mm] \le [/mm] y [mm] \le [/mm] 100},
[mm] (x_{k}) [/mm] = [mm] \vektor{x+k \\ y+k} [/mm]

Bei (i) bin ich mir sehr sicher, dass das Beispiel stimmt.
Aber bei (ii) und (iii) weiß ich nicht, ob es ok ist, wenn die Folge aus der Menge hinaus läuft.
Aber wenn sie nicht herauslaufen dürfte, wäre die Folge ja durch die Menge beschränkt.

        
Bezug
Kompaktheit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:57 Mi 09.11.2011
Autor: Stoecki

hallo,
die folgen dürfen die menge nicht verlassen. allerdings heißt das nicht, dass der grenzwert nicht außerhalb von A liegen darf. Beispiel: (0,1) x (0,1) [mm] :=\{(x,y) | 0 \le x,y \le1\} [/mm] ist teilmenge vom [mm] \IR^{2}. [/mm] diese menge ist beschränkt, denn man kann einen beschränkten kreis finden, der diese menge komplett enthält. der rand liegt nicht drin, da die menge offen ist.  das zu (ii)

bei der (iii) ist abgeschlossenheit gefordert. der trick mit dem rand geht also nicht. dafür steht da nicht, dass diese menge auch beschränkt sein muss. zum beispiel ist [0,1] x [mm] \IR [/mm] eine abgeschlossene teilmenge vom [mm] \IR^{2} [/mm]

ich denke mit diesen tipps sollte es machbar sein, solche folgen zu bauen

gruß bernhard

Bezug
        
Bezug
Kompaktheit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:02 Mi 09.11.2011
Autor: fred97


> (i) Finden sie eine Folge [mm](x_{k})[/mm] im [mm]\IR^{3},[/mm] welche keine
> konvergente Teilfolge hat.
>  
> (ii) Finden Sie eine beschränkte Menge A [mm]\subset\IR^{2}[/mm]
> und eine Folge [mm](x_{k})[/mm] in A derart, dass [mm](x_{k})[/mm] keine in A
> konvergente Teilfolge besitzt.
>  
> (iii) (ii) Finden Sie eine abgeschlossene Menge A [mm]\subset \IR^{2}[/mm]
> und eine Folge [mm](x_{k})[/mm] in A derart, dass [mm](x_{k})[/mm] keine in A
> konvergente Teilfolge besitzt.
>  
>
>
> Ich habe folgende Beispiele gefunden, bei denen ich mich
> frage, ob sie richtig sind. Vllt könnte mir das einer
> sagen.
>  
> (i)  [mm](x_{k})[/mm] = [mm]\vektor{k \\ k \\ k}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)



Das ist O.K.


>  (ii) A = {(x,y)) [mm]\in \IR[/mm]  | x > 0 [mm]\wedge[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

y>0}, [mm](x_{k})[/mm] = [mm]\vektor{x+k \\ y+k}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)



Dieses A ist nicht beschränkt !!!

Suche also ein anderes A.


>  (iii) A
> = {(x,y)) [mm]\in \IR[/mm] | 0 [mm]\le[/mm] x [mm]\le[/mm] 100 [mm]\wedge[/mm] 0 [mm]\le[/mm] y [mm]\le[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> 100},
> [mm](x_{k})[/mm] = [mm]\vektor{x+k \\ y+k}[/mm]


Für diese Folge gilt:  [mm] x_k \notin [/mm] A für fast alle k   !

Obiges A ist kompakt. In diesem A findest Du also keine Folge mit der geforderten Eigenschaft.

FRED

>  
> Bei (i) bin ich mir sehr sicher, dass das Beispiel stimmt.
>  Aber bei (ii) und (iii) weiß ich nicht, ob es ok ist,
> wenn die Folge aus der Menge hinaus läuft.
>  Aber wenn sie nicht herauslaufen dürfte, wäre die Folge
> ja durch die Menge beschränkt.  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]