www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Kompakte, surjektive Abbildung
Kompakte, surjektive Abbildung < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kompakte, surjektive Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:28 Mo 28.01.2013
Autor: Feuerkerk

Aufgabe
Seien X und Y Banachräume, T:X->Y kompakt und surjektiv. Dann ist [mm] dim(Y)<\infty [/mm]

Diese Aufgabe wurde in einer Übung behandelt und als Lösung wurde uns folgendes gegeben (B sei die offene Einheitskugel in X):

Nach dem Open Mapping Theorem ist T(B) offen. Da T kompakt, ist [mm] \overline{T(B)} [/mm] kompakt in Y. Daraus folgt: Die abgeschlossene Einheitskugel in Y ist kompakt, also ist Y endlichdimensional.

Ich verstehe die vorletzte Schlussfolgerung nicht. Woraus genau folgt die Kompaktheit der abgeschlossenen Einheitskugel in Y? Könnte mir das jemand bitte erklären? :-)

        
Bezug
Kompakte, surjektive Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:42 Mo 28.01.2013
Autor: fred97


> Seien X und Y Banachräume, T:X->Y kompakt und surjektiv.
> Dann ist [mm]dim(Y)<\infty[/mm]
>  Diese Aufgabe wurde in einer Übung behandelt und als
> Lösung wurde uns folgendes gegeben (B sei die offene
> Einheitskugel in X):
>  
> Nach dem Open Mapping Theorem ist T(B) offen. Da T kompakt,
> ist [mm]\overline{T(B)}[/mm] kompakt in Y. Daraus folgt: Die
> abgeschlossene Einheitskugel in Y ist kompakt, also ist Y
> endlichdimensional.
>  
> Ich verstehe die vorletzte Schlussfolgerung nicht. Woraus
> genau folgt die Kompaktheit der abgeschlossenen
> Einheitskugel in Y? Könnte mir das jemand bitte erklären?


Ich denke, dass Du ein ganz entscheidendes Hilfsmittel brauchst, und das ist folgender Satz (hattet Ihr den ?):

SATZ: Sind X und Y Banachräume , ist A:X [mm] \to [/mm] Y linear und stetig und ist der Bildraum A(X) abgeschlossen, so ex. ein c>0 mit:

   zu jedem y [mm] \in [/mm] A(X) ex. ein x [mm] \in [/mm] X mit Ax=y und [mm] ||x||_X \le c||y||_Y. [/mm]


Wenn Du diesen Satz hast, so kannst Du folgendes zeigen:

SATZ: Seien X und Y Banachräume und K:X [mm] \to [/mm] Y kompakt. Dann gilt:

    K(X) ist abgeschlossen [mm] \gdw [/mm] dim K(X) < [mm] \infty. [/mm]


Daraus bekommst du dann die

FOLGERUNG: Seien X und Y Banachräume und K:X [mm] \to [/mm] Y kompakt. Ist K surjekziv, so ist dim K(X) < [mm] \infty. [/mm]




FRED

> :-)


Bezug
                
Bezug
Kompakte, surjektive Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:58 Mo 28.01.2013
Autor: Feuerkerk

Hallo,

den Satz hatten wir so nicht, daher wäre es vielleicht besser, hippias' Ansatz zu benutzen, nur leider verstehe ich bei diesem noch nicht, wieso das die Behauptung zeigt.

Bezug
                        
Bezug
Kompakte, surjektive Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:23 Mo 28.01.2013
Autor: Helbig


> den Satz hatten wir so nicht, daher wäre es vielleicht
> besser, hippias' Ansatz zu benutzen, nur leider verstehe
> ich bei diesem noch nicht, wieso das die Behauptung zeigt.

Hallo Feuerkerk,

Nach dem Tip von hippias gibt es eine offene Kugel [mm] $B_r(0)\subseteq [/mm] T(B)$ mit dem Radius $r>0$ und dem Nullvektor von $Y$ als Mittelpunkt. Da [mm] $\overline [/mm] {T(B)}$ kompakt ist, ist [mm] $\overline {B_r(0)}$ [/mm] als abgeschlossene Teilmenge einer kompakten Menge ebenfalls kompakt. Schließlich ist die abgeschlossene Einheitskugel als Bild der kompakten Menge [mm] $\overline {B_r(0)}$ [/mm] unter der stetigen Abbildung [mm] $v\mapsto \frac [/mm] 1 r  v$ kompakt.

Gruß,
Wolfgang

Bezug
                                
Bezug
Kompakte, surjektive Abbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:00 Mo 28.01.2013
Autor: Feuerkerk

Jetzt versteh ich's. Vielen Dank euch dreien, besonders dir, Helbig.

Bezug
        
Bezug
Kompakte, surjektive Abbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:24 Mo 28.01.2013
Autor: hippias

Geht es nicht auch so? Da $T(B)$ offen ist, enthaelt diese Menge eine offene Kugel, deren Abschluss als abgeschlossene Teilmenge der kompakten Menge [mm] $\overline{T(B)}$ [/mm] ebenfalls kompakt ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]