Kommutativ Abbildungen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 00:21 Di 18.09.2012 | Autor: | quasimo |
Aufgabe | Sei [mm] \psi: [/mm] V->V
[mm] \mu: [/mm] V->V
und [mm] \phi [/mm] : V->V
[mm] \phi [/mm] = [mm] \psi [/mm] + [mm] \mu [/mm] und [mm] \psi \mu [/mm] = [mm] \mu \psi
[/mm]
Dann sollte laut Tutor auch gelten [mm] \phi \mu [/mm] = [mm] \mu \phi [/mm] und [mm] \phi \psi [/mm] = [mm] \psi \phi [/mm] |
hallo,
[mm] \phi \mu [/mm] = [mm] \phi [/mm] ( [mm] \phi [/mm] - [mm] \psi) [/mm] = [mm] \phi^2 [/mm] - [mm] \phi \psi
[/mm]
[mm] \mu \phi [/mm] = ( [mm] \phi [/mm] - [mm] \psi) \phi [/mm] = [mm] \phi^2 [/mm] - [mm] \psi \phi
[/mm]
?
LG
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 06:37 Di 18.09.2012 | Autor: | fred97 |
[mm] \phi \mu=(\psi [/mm] + [mm] \mu [/mm] ) [mm] \mu= \psi \mu+ \mu^2= \mu \psi+ \mu^2= \mu(\psi [/mm] + [mm] \mu [/mm] )= [mm] \mu \phi
[/mm]
FRED
|
|
|
|