www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Kombinatorik - LK 12. Klasse
Kombinatorik - LK 12. Klasse < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombinatorik - LK 12. Klasse: Tipp zur Erläuterung der Frage
Status: (Frage) beantwortet Status 
Datum: 14:03 Do 14.02.2013
Autor: Matze339

Aufgabe
Max kann zu seinem Geburtstagsessen nur fünf seiner 20 Freunde einladen.
Bestimmen Sie die Wahrscheinlichkeit, dass der beste Freund von Max unter den 5 Gästen ist.


Meine Frage jetzt ist folgende: Ich habe die Lösung vor mir und zwar besagt sie folgendes:

Ereignis Max = 1* {19 [mm] \choose [/mm] 4} (soll 19 über 4 sein) = 3876
Anzahl der Möglichkeiten, die er hat = {20 [mm] \choose [/mm] 5} (soll 20 über 5 sein)= 15504
P(Max) = 3876 / 15504 = 0.25 = 25%

Wie komme ich auf diese Lösung. Ich kann den Rechenweg "Anzahl der Möglichkeiten, die er hat" nachvollziehen. Den Rest jedoch nicht

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Gruß:)

        
Bezug
Kombinatorik - LK 12. Klasse: Antwort
Status: (Antwort) fertig Status 
Datum: 14:19 Do 14.02.2013
Autor: reverend

Hallo Matze,

> Max kann zu seinem Geburtstagsessen nur fünf seiner 20
> Freunde einladen.
> Bestimmen Sie die Wahrscheinlichkeit, dass der beste Freund
> von Max unter den 5 Gästen ist.
>  
> Meine Frage jetzt ist folgende: Ich habe die Lösung vor
> mir und zwar besagt sie folgendes:
>  
> Ereignis Max = 1* [mm] $\{19\choose 4\}$ [/mm] (soll 19 über 4 sein) = 3876

[mm] \vektor{19\\4} [/mm] schreibt man z.B. \vektor{19\\4}. Es geht auch das, was Du versucht hast, die Syntax ist aber anders: 19\choose{4} ergibt [mm] $19\choose{4}$. [/mm]

Das ist die Zahl der Möglichkeiten, so dass der beste Freund dabei ist. Für den steht hier der Faktor 1; er wird fest ausgewählt. Von den übrigen 19 Leuten können dann noch 4 dazukommen.

>  Anzahl der Möglichkeiten, die er hat = [mm] $\{20\choose 5\}$ [/mm]
> (soll 20 über 5 sein)= 15504
>  P(Max) = 3876 / 15504 = 0.25 = 25%
>  
> Wie komme ich auf diese Lösung. Ich kann den Rechenweg
> "Anzahl der Möglichkeiten, die er hat" nachvollziehen. Den
> Rest jedoch nicht

[mm] P(Max)=\bruch{\vektor{19\\4}}{\vektor{20\\5}}=\bruch{19!*5!*15!}{4!*15!*20!}=\bruch{5}{20}=\bruch{1}{4} [/mm]

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]