Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:44 Sa 29.07.2006 | Autor: | Elbi |
Aufgabe | Zeigen oder widerlegen SIe, dass [mm] \IQ( \wurzel{d}) := \{ \pmat{ a & b \\ db & a } | a,b \in \IQ \}[/mm] mit gewöhnlichen Matrixoperationen einen Körper bildet, wobei d=4. |
Hallo hier da,
also bei der Aufgabe, da habe ich so weit alle Körperaxiome nachweisen können, bis auf die des Inversenelements. Also dabei ist ja zu zeigen, dass [mm]A *A^(-1) =1[/mm].
Also sei hier in meinem Fall [mm]A := \pmat{ a & b \\ 4b & a }[/mm]. Ich habe dann nach dem üblichen Verfahren versucht die Inverse zu bestimmen. Ansatz:
[mm] \pmat{ a & b \\ 4b & a | 1 & 0 \\ 0 & 1 }[/mm]
Ich muss dann ja einfach schauen, dass ich durch Zeilentransformationen auf der linken Seite die Einheitsmatrix stehen habe , so dass auf der rechten Seite dann die Inverse Matrix steht. Ist auch soweit kein Problem. Im Endeffekt bekomme ich heraus:
[mm] \pmat{ 1 & 0 \\ 0 & 1 | \bruch{a}{a^2-4b^2} & \bruch{-b}{a^2-4b^2} \\ \bruch{-4b}{a^2-4b^2} & \bruch{a}{a^2-4b^2} }[/mm]
Mit der Einschränkung, dass [mm]a \not= 0[/mm] und [mm]a \not= 2b[/mm]. Das würde aber dann doch bedeuten, dass in diesen zwei Fällen man keinen Körper hat, weil es kein Inverses gibt? Wenn das so ist, dass wäre das ja genau der Fall für die Nullmatrix, denn wenn a=0 dann auch b=0. Und zur Nullmatrix gibt es ja keine Inverse und laut der Voraussetzung für a und b können sowohl a als auch b Null annehmen. Aber irgendwie kommt es mir seltsam vor. Also habe ich jetzt damit gezeigt, dass es sich um keinen Körper handelt?
Danke im voraus
Elbi
|
|
|
|
Also, für 2x2-Matrizen gilt erstmal generell
[mm]\pmat{a & b \\ c & d}^{-1}=\frac{1}{ad-bc}\pmat{d & -b \\ -c & a}[/mm]
und somit in deinem Fall:
[mm]\pmat{a & b \\ 4b & a}^{-1}=\frac{1}{a^2-4b^2}\pmat{a & -b \\ -4b & a}[/mm]
Jetzt zu deinen beiden speziellen Fällen. Wenn a=0, wird die Matrix doch recht einfach, wenn man sie auf einen Vektor anwendet, werden die Komponenten vertauscht und gestreckt. Da kann man die Umkehrmatrix eigentlich fast ohne Überlegung hinschreiben.
Und für a=2b hast du sowas wie [mm] $\pmat{2b & b \\ 4b & 2b}=b*\pmat{2 & 1 \\ 4 & 2}$. [/mm] Wie du siehst, ist die erste Spalte ein vielfaches der zweiten Spalte. Anschaulich bedeutet das, daß jeder Vektor durch diese Matrix auf ein und die selbe Grade in der Ebene abgebildet wird. Klar, daß man das nicht invertieren kann!
Zu deiner Körperfrage kann ich so nichts sagen.
|
|
|
|