www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Klassifizierung von Gruppen
Klassifizierung von Gruppen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Klassifizierung von Gruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:13 Do 09.02.2006
Autor: kluh

Hallo Leute,

Gibt es eine Art "Schema f" zur Klassifizierung von Gruppen? Wie fange ich an, wenn ich Gruppen klassifizieren soll? Vielleicht könntet ihr mir das am Beispiel von |G|=6 und |G|=10 erklären. Wann brauche ich dabei das Semidirekte Produkt?

Schöne Grüße,
Stefan

        
Bezug
Klassifizierung von Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:22 Do 09.02.2006
Autor: DerHein

Also die Klassifikation aller endlichen Gruppen ist wohl aussichtslos...
da gibt es viel zu viele. Die einfachen (d.h keine nichttrivialen Normalteiler)
sind Ende letzten Jahrhunderts klassifiziert worden... das sind mehrere Tausend Seiten Beweis... verteilt auf Duzende Artikel. Eine vollständige Liste findet sich bei Cohen: Atlas of finite Groups.
Naja für Ordung < 20, sollte eine vollständige Klassifikation jedoch kein unlösbares Problem sein.
Wenn man anfängt sollte man sich zuerst mal Überblick über die möglichen Ordnungen von Elementen verschaffen... Satz von Lagrange. Gibt es z.B. ein Element dessen Ordnung = Gruppenordnung ist weiß man ja das die Gruppe Zyklisch ist... naja dann kann man sich Produkte anschauen und mögliche Kanidaten für die Ordnung des Produkts besorgen und sich so langsam durchhangel...
Man weiß z.B. auch, dass es immer Sylowuntergruppen gibt zu jedem Primteiler der Ordnung.
Hast du z.B. einen Normalteiler identifiziert und eine transversale Untergruppe gefunden so zerfällt deine Gruppe in ein Semidikrektes Produkt... allerdings bin ich da auch kein Experte. Wie immer ist Wikipedia bei sowas immer recht hilfreich... alleine mal ein paar Kanidaten zu kennen: Diedergruppen, [mm] A_n, S_n, [/mm] abelsche Gruppen,... siehe auch
http://mathworld.wolfram.com/FiniteGroup.html

mfg Heinrich


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]