www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Jensensche Ungleichung
Jensensche Ungleichung < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jensensche Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:59 So 20.05.2018
Autor: Noya

Aufgabe
Sei [mm] \Omega \subseteq \IR^N [/mm] (N [mm] \in \IN) [/mm] beschränkt und [mm] j:\IR \to [0,\infty) [/mm] eine konvexe Funktion. Zeige, dass
[mm] j(\bruch{1}{|\Omega|}\int_{\Omega}{fdx})\le \bruch{1}{|\Omega|}\int_{\Omega}{j(f)dx} [/mm]
für alle f [mm] \in L^1(\Omega) [/mm]

Hallo ihr Lieben,

zuerst unsere Definitonen :
[mm] L^p(\Omega)=\{f: \Omega \to \IR: f \text{ messbar und } \parallel f \parallel_{L^p}<\infty\} [/mm]
und [mm] \parallel [/mm] f [mm] \parallel_{L^p}=(\int_{\Omega}{|f(x)|^pdx)^{\bruch{1}{p}}} [/mm]

ehrlich gesagt, weiß ich nicht so genau wie ich hier vorgehen sollen.
Kann man hier jemand einen Tipp/Hinweis geben??

Liebe Grüße und vielen Dank
Noya

        
Bezug
Jensensche Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:28 So 20.05.2018
Autor: fred97


> Sei [mm]\Omega \subseteq \IR^N[/mm] (N [mm]\in \IN)[/mm] beschränkt und
> [mm]j:\IR \to [0,\infty)[/mm] eine konvexe Funktion. Zeige, dass
>  [mm]j(\bruch{1}{|\Omega|}\int_{\Omega}{fdx})\le \bruch{1}{|\Omega|}\int_{\Omega}{j(f)dx}[/mm]
>  
> für alle f [mm]\in L^1(\Omega)[/mm]
>  Hallo ihr Lieben,
>  
> zuerst unsere Definitonen :
>  [mm]L^p(\Omega)=\{f: \Omega \to \IR: f \text{ messbar und } \parallel f \parallel_{L^p}<\infty\}[/mm]
>  
> und [mm]\parallel[/mm] f
> [mm]\parallel_{L^p}=(\int_{\Omega}{|f(x)|^pdx)^{\bruch{1}{p}}}[/mm]
>  
> ehrlich gesagt, weiß ich nicht so genau wie ich hier
> vorgehen sollen.
>  Kann man hier jemand einen Tipp/Hinweis geben??


Habt Ihr das tatsächlich als Übungsaufgabe bekommen ? Derjenige, der sich das ausgedacht hat, muss ein Vollpfosten sein !

Als Übungsaufgabe ist das viel zu schwer ! Daher:

https://math.unibas.ch/uploads/x4epersdb/files/Kapitel6.pdf

Satz 6.7

>  
> Liebe Grüße und vielen Dank
>  Noya


Bezug
                
Bezug
Jensensche Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:18 Mo 21.05.2018
Autor: Noya

Vielen Dank.

Ja die Aufgabe ist als Übungsaufgabe gestellt und gibt nur 4/20Punkten bei 4 Aufgaben.

Muss den Beweis noch durcharbeiten, werde mich dann bei Fragen dazu nochmal melden!

Schöne Pfingsten

Noya

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]