www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Ist dieser Beweis richtig?
Ist dieser Beweis richtig? < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ist dieser Beweis richtig?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:33 Mo 13.09.2004
Autor: Karl_Pech

Hallo Zusammen,


Ich habe hier folgende Behauptung mit Beweis gegeben:


Zu zeigen: Ist [mm]f\![/mm] im Punkt [mm]x_0\in\left[a,b\right][/mm] differenzierbar, so ist [mm]f\![/mm] im Punkt [mm]x_0[/mm] stetig.

Beweis: Es sei [mm]x_n\ne x_0,\ x_n\in\left[a,b\right][/mm]. Dann gilt: [mm]\textstyle f\left(x_n\right)-f\left(x_0\right)=\frac{f\left(x_n\right)-f\left(x_0\right)}{x_n-x_0}\left(x_n-x_0\right)[/mm]. Wenn [mm]x_n[/mm] gegen [mm]x_0[/mm] konvergiert, erhalten wir: [mm]f'\left(x_0\right)\cdot{}0=0[/mm], also [mm]\textstyle \lim_{x_n\to x_0}{f\left(x_n\right)}=f\left(x_0\right)[/mm] und [mm]f\![/mm] ist genau dann stetig bei [mm]x_0[/mm], wenn [mm]\textstyle\lim{x_n}=x_0\Rightarrow\lim_{n\to\infty}{f\left(x_n\right)}=f\left(x_0\right)[/mm], was gerade gezeigt wurde. [mm]\Box[/mm]


Ich würde gerne wissen, ob dieser Beweis richtig ist, oder falls nicht, wie kann man ihn korrigieren kann?



Viele Grüße
Karl



        
Bezug
Ist dieser Beweis richtig?: Antwort
Status: (Antwort) fertig Status 
Datum: 17:58 Mo 13.09.2004
Autor: Julius

Hallo Karl!

Der Beweis ist richtig, man sollte ihn nur etwas formaler aufschreiben. ;-)

Es seien $a<b$ reelle Zahlen, $f :[a,b] [mm] \to \IR$ [/mm] sei differenzierbar in einem [mm] $x_0 \in [/mm] ]a,b[$. Wir wollen zeigen, dass $f$ in [mm] $x_0$ [/mm] auch stetig ist.

Dazu wählen wir eine Folge [mm] $(x_n)_{n \in \IN}$ [/mm]  reeller Zahlen, mit [mm] $x_n \in [/mm] [a,b]$ $(n [mm] \in \IN)$, $x_n \ne x_0$ $(n\in \IN)$ [/mm] und [mm] $\lim\limits_{n \in \IN} x_n [/mm] = [mm] x_0$. [/mm]

Zu zeigen ist: [mm] $\lim\limits_{n \to \infty} f(x_n) [/mm] = [mm] f(x_0)$. [/mm]

Nach Voraussetzung konvergieren die Folgen [mm] $\left( \frac{f(x_n) - f(x_0)}{x_n - x_0} \right)_{n \in \IN}$ [/mm] und [mm] $(x_n [/mm] - [mm] x_0)_{n \in \IN}$, [/mm] und es gilt:

[mm] $\lim\limits_{n \to \infty} \frac{f(x_n) - f(x_0)}{x_n - x_0} [/mm] =: [mm] f'(x_0) \in \IR$, [/mm]

[mm] $\lim\limits_{n \to \infty} (x_n [/mm] - [mm] x_0) [/mm] = 0$.

Daher konvergiert wegen

[mm] $f(x_n)-f(x_0) [/mm] = [mm] \frac{f(x_n) - f(x_0)}{x_n - x_0} \cdot (x_n [/mm] - [mm] x_0)$ [/mm]     $(n [mm] \in \IN)$ [/mm]

(als Produkt konvergenter Folgen) auch die Folge [mm] $(f(x_n)-f(x_0))_{n \in \IN}$, [/mm]

und es gilt:

[mm] $\lim\limits_{n \to \infty} (f(x_n)-f(x_0)) [/mm] = [mm] \left( \lim\limits_{n \to \infty} \frac{f(x_n) - f(x_0)}{x_n - x_0}\right) \cdot \left( \lim\limits_{n \to \infty} (x_n - x_0) \right) [/mm] = [mm] f'(x_0) \cdot [/mm] 0 = 0$,

also:

[mm] $\lim\limits_{n \to \infty} f(x_n) [/mm] = [mm] f(x_0)$. [/mm]

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]