www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Isomorphie
Isomorphie < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Isomorphie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:15 So 06.11.2011
Autor: Flock

Aufgabe
Die Linearen Abbildungen Lin(V,W) sind isomorph zu ihren Darstellungsmatrizen [mm] M(\IR^n, \IR^m). [/mm]

Hallo, Forum!

Ich komme nicht weiter nei der Aufgabe.

Also sind drei Dinge zu erledigen:

1) Homomorphismus nachrechnen
Meine Idee:
Sowohl Matrizen als auch die Linearen Abbildungen bilden einen Vektorraum. Ich würde die Abbildung so definieren:
h: Lin(V,W) -> [mm] M(\IR^n, \IR^m), [/mm] noch weiß ich, dass für den Raum der Linearen Funktionen gilt:
(f+g)(x) = f(x) + g(x), wobei f,g lineare Funktionen
(a*f)(x) = a*f(x), wobei f lineare Funktion und a ein Skalar
ich muss zeigen:
h(f+g) = h(f) + h(g)
h(a*f) = a*h(f)
und hier hackts...
2) Injektivität nachrechnen
Ich muss zeigen, dass nur die Nullabbildung im Kern liegt,
h(f) = 0 -> f = 0
3) Surjektivität nachrechnen
reicht es hinzuschreiben h(id) = I (Einheitsmatrix)?

Vielen Dank im Voraus
Flock

        
Bezug
Isomorphie: Antwort
Status: (Antwort) fertig Status 
Datum: 08:01 Mo 07.11.2011
Autor: fred97


> Die Linearen Abbildungen Lin(V,W) sind isomorph zu ihren
> Darstellungsmatrizen [mm]M(\IR^n, \IR^m).[/mm]
>  Hallo, Forum!
>  
> Ich komme nicht weiter nei der Aufgabe.
>  
> Also sind drei Dinge zu erledigen:
>  
> 1) Homomorphismus nachrechnen
>  Meine Idee:
>  Sowohl Matrizen als auch die Linearen Abbildungen bilden
> einen Vektorraum. Ich würde die Abbildung so definieren:
>  h: Lin(V,W) -> [mm]M(\IR^n, \IR^m),[/mm] noch weiß ich, dass für

> den Raum der Linearen Funktionen gilt:
>  (f+g)(x) = f(x) + g(x), wobei f,g lineare Funktionen
>  (a*f)(x) = a*f(x), wobei f lineare Funktion und a ein
> Skalar
>  ich muss zeigen:
>  h(f+g) = h(f) + h(g)
>  h(a*f) = a*h(f)
>  und hier hackts...
>  2) Injektivität nachrechnen
>  Ich muss zeigen, dass nur die Nullabbildung im Kern liegt,
> h(f) = 0 -> f = 0
>  3) Surjektivität nachrechnen
>  reicht es hinzuschreiben h(id) = I (Einheitsmatrix)?
>  
> Vielen Dank im Voraus
>  Flock


Hallo Flock,

Du schreibst: " Ich würde die Abbildung so definieren: h: Lin(V,W) -> $ [mm] M(\IR^n, \IR^m). [/mm] $

Ja, und dann kommt nix !!  Wie hast Du denn h definiert ???  Das steht nirgends !.

Tipp: nimm   eine Basis B von V und  eine Basis C von W. Abbildungsmatrix

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]