www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Isometrie
Isometrie < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Isometrie: Folgerung
Status: (Frage) beantwortet Status 
Datum: 19:55 Do 15.07.2010
Autor: Brad

ch habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo
Ich habe eine Frage bezüglich Abbildungen
Folgt daraus, dass f eine Isometrie ist auch schon dass f normal ist?
Wir hatten in der Vorlesung Spektralsätze und da hab ich mir überlegt, dass das eig so sein müsste jedoch bin ich mir nicht sicher.
Lg Brad

        
Bezug
Isometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 Do 15.07.2010
Autor: Lippel


> ch habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Hallo
> Ich habe eine Frage bezüglich Abbildungen
>  Folgt daraus, dass f eine Isometrie ist auch schon dass f
> normal ist?

f Isometrie [mm] $\Rightarrow$ [/mm] f orthogonal/unitär (je nachdem ob du dich in einem Euklidischen oder einem unitären Vektorraum befindest) [mm] $\Rightarrow$ [/mm] f normal

>  Wir hatten in der Vorlesung Spektralsätze und da hab ich
> mir überlegt, dass das eig so sein müsste jedoch bin ich
> mir nicht sicher.
>  Lg Brad


Grüße, Lippel

Bezug
                
Bezug
Isometrie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:34 Do 15.07.2010
Autor: felixf

Hallo!

> > ch habe diese Frage in keinem Forum auf anderen
> > Internetseiten gestellt.
>  >  Hallo
> > Ich habe eine Frage bezüglich Abbildungen
>  >  Folgt daraus, dass f eine Isometrie ist auch schon dass
> f
> > normal ist?
>  
> f Isometrie [mm]\Rightarrow[/mm] f orthogonal/unitär

Zumindest, wenn $f(0) = 0$ ist ;-)

LG Felix


Bezug
        
Bezug
Isometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 08:15 Fr 16.07.2010
Autor: fred97


> ch habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Hallo
> Ich habe eine Frage bezüglich Abbildungen
>  Folgt daraus, dass f eine Isometrie ist auch schon dass f
> normal ist?
>  Wir hatten in der Vorlesung Spektralsätze und da hab ich
> mir überlegt, dass das eig so sein müsste jedoch bin ich
> mir nicht sicher.



Ist der zugrunde liegende Raum endlichdimensional, so ist eine lineare Isometrie normal, denn aus

           [mm] $f^{\*} \circ [/mm] f= id$  

folgt, dass f injektiv und somit auch bijektiv ist. Also gilt auch  $f [mm] \circ f^{\*} [/mm] = id$ , denn   [mm] $f^{\*}= f^{-1}$. [/mm]


Ist der zugrunde liegende Raum aber unendlichdimensional, so muß eine lineare Isometrie nicht normal sein. Beispiel: der Hilbertraum [mm] l^2( \IN) [/mm] und die Isometrie

                  [mm] $f(x_1,x_2,x_3, [/mm] ...)= [mm] (0,x_1,x_2,x_3, [/mm] ...)$

Dann ist

                  [mm] $f^{\*}(x_1,x_2,x_3, [/mm] ...)= [mm] (x_2,x_3, [/mm] ...)$

also   [mm] $f^{\*} \circ [/mm] f= id$ , aber  $f [mm] \circ f^{\*} \ne [/mm] id$

FRED


                    






>  Lg Brad


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]