Isometrie < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:38 Fr 24.07.2009 | Autor: | herben |
Hallo Leute, kurze Frage: Um nachzuweisen, dass es sich bei einer gegebenen Abbildung [mm] \phi [/mm] :V [mm] \to [/mm] V (V reeller Vektorraum) um eine Isometrie handelt, reicht es da nachzuweisen dass die Spalten der Darstellungsmatrix von [mm] \phi [/mm] eine Orthogonalbasis von V bilden?
Definition von Isometrie: [mm] \phi [/mm] : V [mm] \to [/mm] V heißt Isometrie, wenn d(v,w) = [mm] d(\phi(v),\phi(w)) [/mm] für alle [mm] v,w\in [/mm] V
Mein Frage lässt sich auch umformulieren: Eine Isometrie ist doch im Grunde Komposition einer orthogonalen Abbildung mit einer Translation, ist diese Komposition nun wieder orthogonal? ich bin nicht sicher, mir fällt allerdings auch kein gegenbeispiel ein...
besten dank im voraus
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:09 Fr 24.07.2009 | Autor: | felixf |
Hallo!
> Hallo Leute, kurze Frage: Um nachzuweisen, dass es sich bei
> einer gegebenen Abbildung [mm]\phi[/mm] :V [mm]\to[/mm] V (V reeller
> Vektorraum)
Es ist nicht nur ein reeller Vektorraum, sondern ein reeller Vektorraum mit einer Metrik! Gehe ich richtig in der Annahme, dass diese Metrik von einem Skalarprodukt stammt? Davon gehe ich jetzt einfach mal aus.
> um eine Isometrie handelt, reicht es da
> nachzuweisen dass die Spalten der Darstellungsmatrix von
> [mm]\phi[/mm] eine Orthogonalbasis von V bilden?
Wenn [mm] $\phi$ [/mm] linear ist, ja. Wenn du von [mm] $\phi$ [/mm] nur weisst, dass es Abstandserhaltend ist, kann es auch noch einen Translationsfaktor enthalten.
Du musst also den linearen Anteil der Abbildung betrachten. (Dieser ist durch $h(x) := [mm] \phi(x) [/mm] - [mm] \phi(0)$ [/mm] gegeben: es gilt $h(0) = 0$.)
> Definition von Isometrie: [mm]\phi[/mm] : V [mm]\to[/mm] V heißt Isometrie,
> wenn d(v,w) = [mm]d(\phi(v),\phi(w))[/mm] für alle [mm]v,w\in[/mm] V
>
> Mein Frage lässt sich auch umformulieren: Eine Isometrie
> ist doch im Grunde Komposition einer orthogonalen Abbildung
> mit einer Translation,
Ja.
> ist diese Komposition nun wieder
> orthogonal? ich bin nicht sicher, mir fällt allerdings
> auch kein gegenbeispiel ein...
Das ist genau dann wieder orthogonal (also insb. eine lineare Abbildung), wenn die Translation die Identitaet ist (also gar nichts verschoben wird)!
Versuch es doch mal zu beweisen :)
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:19 Fr 24.07.2009 | Autor: | herben |
Alles klar, vielen Dank.
mmh, ja...wie würd ich das beweisen....ich versuch einfach mal was...
Sei $ [mm] \phi [/mm] = f [mm] \circ \tau$ [/mm] mit $f$ orthogonal und [mm] $\tau$ [/mm] Translation mit [mm] $\tau(v)=v+w$
[/mm]
ZZ: [mm] $\phi$ [/mm] orthogonal [mm] \gdw \tau=id$
[/mm]
[mm] \Rightarrow: [/mm] Da [mm] \phi [/mm] orthogonal gilt insbesondere [mm] $\phi(0)=0$, [/mm] also
[mm] $0=\phi(0)=(f\circ \tau)(0)=f(\tau(0))=f(0+w)=f(0)+f(w)=f(w) \Rightarrow w\in [/mm] ker(f) [mm] \Rightarrow [/mm] w=0$ da f als orthogonale Abbildung invertierbar und somit insbesondere injektiv ist. [mm] \Rightarrow $\tau(v)=v+w=v+0=v \forall [/mm] v [mm] \Rightarrow \tau=id$
[/mm]
[mm] \Leftarrow: [/mm] Sei [mm] $\tau=id$ [/mm] dann gilt [mm] $\phi(v)=f(\tau(v))=f(v) \Rightarrow \phi$ [/mm] orthogonal
aber ohne garantie
lg
|
|
|
|