Iso(V,W) offen in Hom(V,W) < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:20 Mi 30.03.2011 | Autor: | marc1601 |
Hallo,
wenn $V$ und $W$ zwei endlich-dimensionale [mm] $\IC$-Vektorräume [/mm] sind und wie üblich mit [mm] $\mathrm{Hom}(V,W)$ [/mm] der Vektorraum der linearen Abbildung von $V$ nach $W$ ist, so bildet die Menge [mm] $\mathrm{Iso}(V,W)$ [/mm] zwar keinen Unterraum von [mm] $\mathrm{Hom}(V,W)$ [/mm] jedoch eine Teilmenge. Versehen wir [mm] $\mathrm{Hom}(V,W)$ [/mm] mit der üblichen Topologie (bis auf topologische Äquivalenz gibt es im endl.-dimensionalen Fall ja nur eine sinnvolle), so weiß man angeblich, dass [mm] $\mathrm{Iso}(V,W)$ [/mm] eine offene Teilmenge darstellen soll.
Hat jemand für den letzten Punkt ein schnelles Argument? Irgendwie ist mir das anschaulich klar, aber ich bin gefragt worden, wie man das denn gut zeigen könnte. Weiß jemand da weiter? Herzlichen Dank!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:58 Mi 30.03.2011 | Autor: | cycore |
Hallo marc,
wisst ihr, dass die Determinante [mm]det\colon\mathrm{Hom}(\IC^n,\IC^n)\to\IC[/mm] (in dieser Topologie) stetig ist?
Denn dann hast du im Fall [mm]\mathrm{Iso}(V,W)\neq\emptyset[/mm], dass [mm]V\cong\IC^n\cong{W}[/mm] und da hier die Determinante definiert ist: [mm]\mathrm{Iso}(\IC^n, \IC^n) = \mathrm{det}^{-1}{(\IC\setminus{0})}\subset\mathrm{Hom}(\IC^n, \IC^n)[/mm].
Wenn ihr das nicht direkt wisst, dann überlegt man sich leicht, dass die Vektorräume [mm]\mathrm{Hom}(\IC^n,\IC^m) \approx \IC^{n\times m}[/mm] homöomorph sind...bei den Matrizen ist die Stetigkeit der Determinante klar.
gruß cycore
|
|
|
|