Irreduzibel linear verschieben < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:05 Mo 23.02.2015 | Autor: | sissile |
Aufgabe | Sei R ein Integritätsbereich, [mm] \alpha \in R^{\*} [/mm] und [mm] \beta \in [/mm] R
(i) Die Abbildung [mm] \Phi: [/mm] R[X] [mm] \to [/mm] R[X], p(X) [mm] \mapsto p(\alpha x+\beta) [/mm] ist ein Isomorphismus
(ii) p(X) [mm] \in [/mm] R ist irreduzibel [mm] \gdw p(\alpha X+\beta) [/mm] ist irreduzibel |
Hallo
Zu (i):
Betrachte die Umkehrabbildung [mm] \Phi^{-1}: [/mm] p(X) [mm] \mapsto p(\alpha^{-1} (X-\beta)) [/mm] für die Bijektion.
Die Homomorphie für p(X), q(X) [mm] \in [/mm] R[X]:
[mm] \Phi (p(X)+q(X))=\Phi((p+q)(X))=(p+q)(\alpha X+\beta)=p(\alpha [/mm] X + [mm] \beta) [/mm] + [mm] q(\alpha [/mm] X + [mm] \beta)=\Phi(p(X))+\Phi(q(X))
[/mm]
[mm] \Phi (p(X)*q(X))=\Phi((p*q)(X))=(p*q)(\alpha X+\beta)=p(\alpha [/mm] X + [mm] \beta) [/mm] * [mm] q(\alpha [/mm] X + [mm] \beta)=\Phi(p(X))*\Phi(q(X))
[/mm]
Da es keine Nullteiler gibt kann der Leitkoeffizient nicht 0 werden.
Zu (ii):
[mm] \Leftarrow [/mm] )
Sei p(X) [mm] \in [/mm] R[X] reduzibel, d.h. p(X)=f(X)g(X) mit f,g [mm] \not\in R^{\*}. [/mm]
[mm] \Phi(p(X))=\Phi(f(X)g(X))=\Phi(f(X))\Phi(g(X))
[/mm]
[mm] p(\alpha [/mm] X + [mm] \beta)=f(\alpha [/mm] X + [mm] \beta)*g(\alpha [/mm] X + [mm] \beta)
[/mm]
[mm] \Rightarrow)
[/mm]
Sei [mm] p(\alpha [/mm] X + [mm] \beta) \in [/mm] R[X] reduzibel, d.h. [mm] \Phi(p(X))=p(\alpha [/mm] X + [mm] \beta)=f(X)g(X) [/mm] mit f,g [mm] \not\in R^{\*}
[/mm]
Hier bin ich mir unsicher. Haben f(X) und g(X) auch die Gestalt [mm] g(\alpha [/mm] X + [mm] \beta), f(\alpha [/mm] X + [mm] \beta)? [/mm]
LG,
sissi
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:22 Mo 23.02.2015 | Autor: | statler |
> Sei R ein Integritätsbereich, [mm]\alpha \in R^{\*}[/mm] und [mm]\beta \in[/mm]
> R
> (i) Die Abbildung [mm]\Phi:[/mm] R[X] [mm]\to[/mm] R[X], p(X) [mm]\mapsto p(\alpha x+\beta)[/mm]
> ist ein Isomorphismus
> (ii) p(X) [mm]\in[/mm] R ist irreduzibel [mm]\gdw p(\alpha X+\beta)[/mm] ist
> irreduzibel
Auch hallo!
> Zu (ii):
Was treibst du immer für einen Aufwand? Nach i) ist [mm] $\Phi$ [/mm] ein Isomorphismus, und wahrscheinlich sollst du das in ii) verwenden:
p(X) = r(X) [mm] \cdot [/mm] s(X) [mm] \Rightarrow
[/mm]
[mm] \Phi(p(X)) [/mm] = [mm] \Phi(r(X) \cdot [/mm] s(X)) = [mm] \Phi(r(X)) \cdot \Phi(s(X)) [/mm] =
r'(X) [mm] \cdot [/mm] s'(X) (mit ' nicht die Ableitung)
und umgekehrt
[mm] $\Phi$(p(X)) [/mm] = r(X) [mm] \cdot [/mm] s(X) [mm] \Rightarrow [/mm] p(X) = [mm] \Phi^{-1}(r(X) \cdot \Phi^{-1}(s(X) [/mm] = r''(X) [mm] \cdot [/mm] s''(X) (mit '' nicht die 2. Ableitung)
Gruß aus HH
Dieter
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 15:23 Mo 23.02.2015 | Autor: | sissile |
Hallo,
> > Sei R ein Integritätsbereich, [mm]\alpha \in R^{\*}[/mm] und [mm]\beta \in[/mm]
> > R
> > (i) Die Abbildung [mm]\Phi:[/mm] R[X] [mm]\to[/mm] R[X], p(X) [mm]\mapsto p(\alpha x+\beta)[/mm]
> > ist ein Isomorphismus
> > (ii) p(X) [mm]\in[/mm] R ist irreduzibel [mm]\gdw p(\alpha X+\beta)[/mm]
> ist
> > irreduzibel
> Auch hallo!
> > Zu (ii):
> Was treibst du immer für einen Aufwand? Nach i) ist [mm]\Phi[/mm]
> ein Isomorphismus, und wahrscheinlich sollst du das in ii)
> verwenden:
> p(X) = r(X) [mm]\cdot[/mm] s(X) [mm]\Rightarrow[/mm]
> [mm]\Phi(p(X))[/mm] = [mm]\Phi(r(X) \cdot[/mm] s(X)) = [mm]\Phi(r(X)) \cdot \Phi(s(X))[/mm]
> =
> r'(X) [mm]\cdot[/mm] s'(X) (mit ' nicht die Ableitung)
> und umgekehrt
> [mm]\Phi[/mm](p(X)) = r(X) [mm]\cdot[/mm] s(X) [mm]\Rightarrow[/mm] p(X) =
> [mm]\Phi^{-1}(r(X) \cdot \Phi^{-1}(s(X)[/mm] = r''(X) [mm]\cdot[/mm] s''(X)
> (mit '' nicht die 2. Ableitung)
>
> Gruß aus HH
> Dieter
>
Hallo,
Was machst du anders als ich in meinen ersten Beitrag?
Bei der Richtung [mm] \Rightarrow [/mm] erkenne ich keinen Unterschied, außer das du die polynome dannach noch anders bennenst. Den Clou hinter der Umbennenung habe ich aber verstanden.
Du machst den Beweis doch auch so:
Für die Rückrichtung: Ist p(x) reduzibel [mm] \Rightarrow \Phi(p(X)) [/mm] reduzibel
Für die Hinrichtung: Ist [mm] \Phi(p(x)) [/mm] reduzibel [mm] \Rightarrow [/mm] p(X) reduzibel
Mittels den Isomorphismus versicherst du das z.B bei der Hinrichtung dass r''(X), s''(X) keine Einheiten sind wenn r(X), s(X) keine Einheiten sind. Da [mm] \Phi^{-1} [/mm] alsIsomorphismus Einheiten auf Einheiten abbildet.
LG,
sissi
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:24 Mi 25.02.2015 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|