www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Inverses zu x
Inverses zu x < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverses zu x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:19 Do 24.04.2014
Autor: pc_doctor

Hallo,

ich habe eine Frage bezüglich der Inverse zu x :

x = c + d [mm] \wurzel{2} [/mm]

Wieso ist [mm] x^{-1} [/mm] = [mm] (\bruch{c}{c^{2}-2d^{2}} [/mm] + [mm] \bruch{d}{2d^{2}-c^{2}} \wurzel{2} [/mm] )
Könnte mir das bitte einer erklären ?

Vielen Dank im Voraus.

        
Bezug
Inverses zu x: Antwort
Status: (Antwort) fertig Status 
Datum: 20:29 Do 24.04.2014
Autor: Richie1401

Hi,

> Hallo,
>  
> ich habe eine Frage bezüglich der Inverse zu x :
>  
> x = c + d [mm]\wurzel{2}[/mm]
>  
> Wieso ist [mm]x^{-1}[/mm] = [mm](\bruch{c}{c^{2}-2d^{2}}[/mm] +
> [mm]\bruch{d}{2d^{2}-c^{2}}[/mm] )


>  Könnte mir das bitte einer erklären ?

Also ich nicht, denn die Inverse ist so nicht korrekt. Kannst das mit c=1 und [mm] d=\sqrt{2} [/mm] überprüfen.

Liebe Grüße

>  
> Vielen Dank im Voraus.


Bezug
                
Bezug
Inverses zu x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:32 Do 24.04.2014
Autor: pc_doctor

Hallo, danke für die Antwort.

Wie berechne ich dann die Inverse ?
Es ist ja [mm] x^{-1} [/mm] , also einfach [mm] \bruch{1}{x} [/mm] geht ja nicht , oder ?


EDIT: Siehe vorheriger Post von mir , [mm] \wurzel{2} [/mm] wurde vergessen !!!

Bezug
                        
Bezug
Inverses zu x: Antwort
Status: (Antwort) fertig Status 
Datum: 20:49 Do 24.04.2014
Autor: Richie1401


> Hallo, danke für die Antwort.
>  
> Wie berechne ich dann die Inverse ?
> Es ist ja [mm]x^{-1}[/mm] , also einfach [mm]\bruch{1}{x}[/mm] geht ja nicht
> , oder ?

Doch na klar.

[mm] x^{-1}=\frac{1}{x}=\frac{1}{c+d\wurzel{2}}=\frac{c-\sqrt{2}d}{(c-\sqrt{2}d)(c+\sqrt{2}d)}=\frac{c-\sqrt{2}d}{c^2-2d^2}=\frac{c}{c^2-2d^2}-\frac{d}{c^2-2d^2}\sqrt{2}=\frac{c}{c^2-2d^2}+\frac{d}{2d^2-c^2}\sqrt{2} [/mm]

Voila!

>  
> EDIT: Siehe vorheriger Post von mir , [mm]\wurzel{2}[/mm] wurde
> vergessen !!!


Bezug
        
Bezug
Inverses zu x: Antwort
Status: (Antwort) fertig Status 
Datum: 20:50 Do 24.04.2014
Autor: Richie1401

Durch die Änderung des Terms ist es nun doch möglich, siehe dazu hier:

https://matheraum.de/read?t=1018033

Bezug
                
Bezug
Inverses zu x: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:02 Do 24.04.2014
Autor: pc_doctor

Alles klar , vielen vielen Dank für die Hilfe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]