www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Inverse eines Zykels
Inverse eines Zykels < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse eines Zykels: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:00 Sa 24.01.2015
Autor: qwertz235

Aufgabe
Sei [mm] \sigma\in S_{n} [/mm] mit [mm] n\in \mathbb{N} [/mm] eine Permutation und [mm] \{i_{1},...,i_{r}\}\subseteq \{1,...,n\} [/mm] mit [mm] r\ge [/mm] 1.
Zeigen Sie, dass die Inverse des Zykels [mm] (i_{1}, i_{2},..., i_{r}) [/mm] durch [mm] (i_{r}, i_{r-1},..., i_{2}, i_{1}) [/mm] gegeben ist.

Hallo,
ich bin mir etwas unsicher, wie man an diese Aufgabe herangehen muss und was man genau zu zeigen hat. Soll ich einfach beide Zykel miteinander multiplizieren und schauen, was dabei herauskommt oder soll ich die Inverse irgendwie herleiten?

Viele Grüße

        
Bezug
Inverse eines Zykels: Antwort
Status: (Antwort) fertig Status 
Datum: 16:07 Sa 24.01.2015
Autor: hippias

Beides ist moeglich. Jedoch sollte nach der Herleitung ein Nachweis gefuehrt werden, dass Du die Inverse gefunden hast. Das wird darauf hinauslaufen, dass Du das Produkt der beiden Zykel auswertest.

Bezug
                
Bezug
Inverse eines Zykels: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:46 Sa 24.01.2015
Autor: qwertz235

Ok alles klar. Wenn ich das Produkt der beiden Zykel bilde, dann erhalte ich, dass jedes Element auf sich selbst abbildet, also die Identität. Bezeichnet man das bei Zykeln auch so und wie schreibt man das in Zykelschreibweise auf?

Bezug
                        
Bezug
Inverse eines Zykels: Antwort
Status: (Antwort) fertig Status 
Datum: 17:40 Sa 24.01.2015
Autor: statler

Hallo!

> Ok alles klar. Wenn ich das Produkt der beiden Zykel bilde,
> dann erhalte ich, dass jedes Element auf sich selbst
> abbildet, also die Identität. Bezeichnet man das bei
> Zykeln auch so und wie schreibt man das in
> Zykelschreibweise auf?

Zykeln sind ja Abbildungen in spezieller Schreibweise, also heißt die Abbildung, die jedes Element auf sich abbildet, auch die Identität. Schreiben kann man die Identität z. B. als (1): 1 geht auf 1, und mit dem Rest passiert auch nix.
Gruß aus HH
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]