www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Inverse Matrix
Inverse Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:11 Sa 12.09.2009
Autor: anna_h

Aufgabe
[mm] \pmat{ s-1 & -1 & 0 & 0 \\ -1 & s & 0 & 0 \\ -1 & -1 & s+1 & 0 \\ -1 & -1 & 0 & s+2} [/mm]

Hallo Leute,
ich hoffe mir kann jemand helfen, ich soll eine inverse Matrix bilden. Scheitere aber schon am ersten Schritt.

[mm] \pmat{ s-1 & -1 & 0 & 0 \\ -1 & s & 0 & 0 \\ -1 & -1 & s+1 & 0 \\ -1 & -1 & 0 & s+2} [/mm] = [mm] \pmat{ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1} [/mm]
[mm] \pmat{ 1 & 0 & 0 & 0 \\ \bruch{-1}{s} & 1 & 0 & 0 \\ \bruch{1}{s+1} & \bruch{-1}{s+1} & 1 & 0 \\ \bruch{-1}{s+2}& \bruch{-1}{s+2} & 0 & 1} [/mm] = [mm] \pmat{ \bruch{s}{s^2-s-1} & \bruch{1}{s^2-s-1}& 0 & 0 \\ 0 & \bruch{1}{s} & 0 & 0 \\ 0 & 0 & \bruch{1}{s+1} & 0 \\ 0 & 0 & 0 & \bruch{1}{s+2}} [/mm]

Das ist der Ansatz zur  Lösung von meinem Lehrer. Aber wie der auf die erste Zeile kommt verstehe ich nicht.


        
Bezug
Inverse Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 20:36 Sa 12.09.2009
Autor: Phil_W


> [mm]\pmat{ s-1 & -1 & 0 & 0 \\ -1 & s & 0 & 0 \\ -1 & -1 & s+1 & 0 \\ -1 & -1 & 0 & s+2}[/mm]
>  
> Hallo Leute,
> ich hoffe mir kann jemand helfen, ich soll eine inverse
> Matrix bilden. Scheitere aber schon am ersten Schritt.
>
> [mm]\pmat{ s-1 & -1 & 0 & 0 \\ -1 & s & 0 & 0 \\ -1 & -1 & s+1 & 0 \\ -1 & -1 & 0 & s+2}[/mm]
> = [mm]\pmat{ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1}[/mm]
>  
> [mm]\pmat{ 1 & 0 & 0 & 0 \\ \bruch{-1}{s} & 1 & 0 & 0 \\ \bruch{1}{s+1} & \bruch{-1}{s+1} & 1 & 0 \\ \bruch{-1}{s+2}& \bruch{-1}{s+2} & 0 & 1}[/mm]
> = [mm]\pmat{ \bruch{s}{s^2-s-1} & \bruch{1}{s^2-s-1}& 0 & 0 \\ 0 & \bruch{1}{s} & 0 & 0 \\ 0 & 0 & \bruch{1}{s+1} & 0 \\ 0 & 0 & 0 & \bruch{1}{s+2}}[/mm]
>
> Das ist der Ansatz zur  Lösung von meinem Lehrer. Aber wie
> der auf die erste Zeile kommt verstehe ich nicht.
>  

Er hat die erste Zeile mit s multipliziert und anschliessend die zweite Zeile aufaddiert.
Um eine "1"  dastehen zu haben musste er noch druch das Ergebnis bei [mm] a_{1,1} [/mm] teilen
Gruß Phil

Bezug
                
Bezug
Inverse Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:47 Sa 12.09.2009
Autor: anna_h

Alles klar. Vielen Dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]