www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Intervallschachtelung
Intervallschachtelung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Intervallschachtelung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:15 Sa 13.04.2013
Autor: Stephan123

Aufgabe
Seien Folgen [mm] (a_{n}) [/mm] und [mm] (b_{n}) [/mm] mit 0 < [mm] a_{0} [/mm] < [mm] b_{0} [/mm] gegeben durch

[mm] a_{n+1} [/mm] = [mm] \sqrt{a_{n} b_{n}} [/mm] , [mm] b_{n+1} [/mm] = [mm] \frac{a_{n}+b_{n}}{2} [/mm]

Zeigen Sie, dass die Intervalle [mm] I_{n} [/mm] = [mm] [a_{n},b_{n}] [/mm] eine Intervallschachtelung mit gemeinsamen Grenzwert [mm] M(a_{0},b_{0}) [/mm] = [mm] \lim \limits_{n \to \infty} a_{n} [/mm] = [mm] \lim \limits_{n \to \infty} b_{n} [/mm] bilden.





Leider weiß ich nicht so recht, wie ich an die Aufgabe herangehen soll. Ich habe gesehen, dass [mm] (I_{n})_{n \in N} [/mm] eine Intervallschachtelung ist, wenn [mm] I_{n+1} \subset I_{n} \forall [/mm] n [mm] \in [/mm] N und [mm] \lim \limits_{n \to \infty} |I_{n}| [/mm] = 0 gilt.

Um zu zeigen, dass [mm] I_{n+1} \subset I_{n} \forall [/mm] n [mm] \in [/mm] N gilt, wollte ich [mm] a_{n+1} [/mm] > [mm] a_{n} [/mm] und [mm] b_{n+1} [/mm] < [mm] b_{n} [/mm] mit Induktion zeigen.

1) [mm] a_{n+1} [/mm] > [mm] a_{n}: [/mm]

n=0 :
[mm] a_{1} [/mm] = [mm] \sqrt{a_{0} b_{0}} \Leftrightarrow (a_{1})^{2} [/mm] = [mm] a_{0} b_{0} [/mm] > [mm] a_{0} a_{0} \Rightarrow a_{1} [/mm] > [mm] a_{0} [/mm]

n [mm] \rightarrow [/mm] n+1:
[mm] a_{n+2} [/mm] = [mm] \sqrt{a_{n+1} b_{n+1}} \Leftrightarrow (a_{n+2})^{2} [/mm] = [mm] a_{n+1} b_{n+1} [/mm]

Nun müsste man noch zeigen, dass [mm] b_{n+1} [/mm] > [mm] a_{n+1} [/mm] . An Dieser stelle komme ich aber nicht weiter.
Leider weiß ich auch überhaupt nicht, ob diese Vorgehensweise so richtig ist, oder ob etwas anderes verlangt ist. Ich würde mich freuen, wenn jemand etwas zu der Vorgehensweise bei dieser Art von Aufgabe sagen könnte.

        
Bezug
Intervallschachtelung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:08 Sa 13.04.2013
Autor: Helbig


> Seien Folgen [mm](a_{n})[/mm] und [mm](b_{n})[/mm] mit 0 < [mm]a_{0}[/mm] < [mm]b_{0}[/mm]
> gegeben durch
>  
> [mm]a_{n+1}[/mm] = [mm]\sqrt{a_{n} b_{n}}[/mm] , [mm]b_{n+1}[/mm] =
> [mm]\frac{a_{n}+b_{n}}{2}[/mm]
>  
> Zeigen Sie, dass die Intervalle [mm]I_{n}[/mm] = [mm][a_{n},b_{n}][/mm] eine
> Intervallschachtelung mit gemeinsamen Grenzwert
> [mm]M(a_{0},b_{0})[/mm] = [mm]\lim \limits_{n \to \infty} a_{n}[/mm] = [mm]\lim \limits_{n \to \infty} b_{n}[/mm]
> bilden.
>  
>
>
>
> Leider weiß ich nicht so recht, wie ich an die Aufgabe
> herangehen soll. Ich habe gesehen, dass [mm](I_{n})_{n \in N}[/mm]
> eine Intervallschachtelung ist, wenn [mm]I_{n+1} \subset I_{n} \forall[/mm]
> n [mm]\in[/mm] N und [mm]\lim \limits_{n \to \infty} |I_{n}|[/mm] = 0 gilt.
>  
> Um zu zeigen, dass [mm]I_{n+1} \subset I_{n} \forall[/mm] n [mm]\in[/mm] N
> gilt, wollte ich [mm]a_{n+1}[/mm] > [mm]a_{n}[/mm] und [mm]b_{n+1}[/mm] < [mm]b_{n}[/mm] mit
> Induktion zeigen.
>  
> 1) [mm]a_{n+1}[/mm] > [mm]a_{n}:[/mm]
>  
> n=0 :
>  [mm]a_{1}[/mm] = [mm]\sqrt{a_{0} b_{0}} \Leftrightarrow (a_{1})^{2}[/mm] =
> [mm]a_{0} b_{0}[/mm] > [mm]a_{0} a_{0} \Rightarrow a_{1}[/mm] > [mm]a_{0}[/mm]
>  
> n [mm]\rightarrow[/mm] n+1:
>  [mm]a_{n+2}[/mm] = [mm]\sqrt{a_{n+1} b_{n+1}} \Leftrightarrow (a_{n+2})^{2}[/mm]
> = [mm]a_{n+1} b_{n+1}[/mm]
>  
> Nun müsste man noch zeigen, dass [mm]b_{n+1}[/mm] > [mm]a_{n+1}[/mm] . An
> Dieser stelle komme ich aber nicht weiter.

Hallo Stephan,

zeige zuerst per Induktion [mm] $a_n [/mm] < [mm] b_n\,.$ [/mm] Hierzu zeige allgemein: Das geometrische Mittel [mm] $\sqrt [/mm] {a*b}$ der beiden verschiedenen positiven Zahlen $a, b$ ist kleiner als deren arithmetisches Mittel [mm] $(a+b)/2\,.$ [/mm]

>  Leider weiß ich auch überhaupt nicht, ob diese
> Vorgehensweise so richtig ist, oder ob etwas anderes
> verlangt ist. Ich würde mich freuen, wenn jemand etwas zu
> der Vorgehensweise bei dieser Art von Aufgabe sagen
> könnte.

Sonst bist Du auf dem richtigen Weg!

Gruß,
Wolfgang


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]