Integration von Brüchen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:46 Do 27.04.2006 | Autor: | cluster |
Aufgabe | Wir sollen folgendes Integral lösen:
[mm] \integral_{a}^{b}{ \bruch{9x +1}{x^{2}+x+1}dx}
[/mm]
Ich habe zuerst die Funktion folgendermaßen umgeformt:
[mm] \integral_{a}^{b}{ \bruch{9x +1}{x^{2}+x+1}dx}=\integral_{a}^{b}{ \bruch{4,5\*(2x +1)-3,5}{x^{2}+x+1}dx}=4,5\*\integral_{a}^{b}{ \bruch{2x +1}{x^{2}+x+1}dx}-3,5\*\integral_{a}^{b}{ \bruch{1}{x^{2}+x+1}dx}
[/mm]
Dann habe ich das Integral
[mm] 4,5\*\integral_{a}^{b}{ \bruch{2x +1}{x^{2}+x+1}dx} [/mm] durch [mm] 4,5\* ln|x^{2}+x+1| [/mm] ersetzt und erhalte somit:
[mm] 4,5\* ln|x^{2}+x+1|-3,5\*\integral_{a}^{b}{\bruch{1}{x^{2}+x+1}dx}
[/mm]
|
Nachdem ich mich nun bereits geraume Zeit an dieser Aufgabe beschäfigt habe, bin ich mir nicht mehr sicher wie ich das letzte Integral bilden soll bzw. ob meine Vorgehensweise überhaupt zum gewünschten Ziel führt.
Für Hinweise wäre ich sehr dankbar.
Gruß
cluster
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|