Integration mit einfacher Fkt. < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:44 Fr 02.12.2011 | Autor: | Harris |
Aufgabe | $f$ sei eine Zufallsvariable zum Wahrscheinlichkeitsraum [mm] $(\Omega,A,P)$. [/mm] Beweisen Sie
$f$ integrierbar [mm] $\Leftrightarrow\sum_{n=1}^\infty P(\{ |f|>n})<\infty. [/mm] |
Hi!
Ich komme bei der Bearbeitung dieser Aufgabe nicht so ganz weiter. Ich möchte die Rückrichtung zeigen, ich denke die Hinrichtung geht analog. Die Idee steckt ja dahinter, das ganze mit Treppenfunktionen abzuschätzen.
Ich definiere die Mengen [mm] $A_n=\{n-1<|f|\leq n\}$ [/mm] und die einfache Funktion [mm] $X=\sum_{n=1}^\infty n1_{A_n}$.
[/mm]
Nun gilt für jeden Punkt [mm] $x\in A_n$, [/mm] dass [mm] $|f(x)|\leq [/mm] n$ und somit [mm] $|f|\leq [/mm] X$. Nun ist weiter [mm] $\int [/mm] X [mm] dP=\sum_{n=1}^\infty nP(A_n)$.
[/mm]
Mein Problem nun: Wie bekomme ich das [mm] $nP(a_n)$ [/mm] in die Gestalt [mm] $P(\{ |f|>n\})$?
[/mm]
Ich meine, die Reihe [mm] $\sum_{i=n+1}^\infty P(A_i)=P(\{ |f|>n\})$, [/mm] aber wie verwerte ich noch den Faktor $n$?
Der Rest würde dann gehen. Aus [mm] $\int [/mm] X dP [mm] <\infty$ [/mm] würde die Integrabilität von $|f|$ und somit auch von $f$ folgen.
Grüße, Harris
|
|
|
|
Hallo Harris,
> [mm]f[/mm] sei eine Zufallsvariable zum Wahrscheinlichkeitsraum
> [mm](\Omega,A,P)[/mm]. Beweisen Sie
> $f$ integrierbar [mm]$\Leftrightarrow\sum_{n=1}^\infty P(\{ |f|>n})<\infty.[/mm]
>
> Hi!
>
> Ich komme bei der Bearbeitung dieser Aufgabe nicht so ganz
> weiter. Ich möchte die Rückrichtung zeigen, ich denke die
> Hinrichtung geht analog. Die Idee steckt ja dahinter, das
> ganze mit Treppenfunktionen abzuschätzen.
>
> Ich definiere die Mengen [mm]A_n=\{n-1<|f|\leq n\}[/mm] und die
> einfache Funktion [mm]X=\sum_{n=1}^\infty n1_{A_n}[/mm].
> Nun gilt
> für jeden Punkt [mm]x\in A_n[/mm], dass [mm]|f(x)|\leq n[/mm] und somit
> [mm]|f|\leq X[/mm]. Nun ist weiter [mm]\int X dP=\sum_{n=1}^\infty nP(A_n)[/mm].
>
> Mein Problem nun: Wie bekomme ich das [mm]nP(a_n)[/mm] in die
> Gestalt [mm]P(\{ |f|>n\})[/mm]?
> Ich meine, die Reihe
> [mm]\sum_{i=n+1}^\infty P(A_i)=P(\{ |f|>n\})[/mm], aber wie verwerte
> ich noch den Faktor [mm]n[/mm]?
Unter der Voraussetzung, dass die Reihe (absolut) konvergiert, gilt
[mm] \sum_{n=1}^\infty nP(A_n)=\sum_{n=1}^\infty \sum_{j=n}^\infty P(A_j).
[/mm]
Es handelt sich um eine Änderung der Summationsreihenfolge. Auf der linken Seite werden "Zeilen" summiert, auf der rechten Seite "Spalten".
>
> Der Rest würde dann gehen. Aus [mm]\int X dP <\infty[/mm] würde
> die Integrabilität von [mm]|f|[/mm] und somit auch von [mm]f[/mm] folgen.
>
> Grüße, Harris
LG
|
|
|
|