www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integration durch Substitution
Integration durch Substitution < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration durch Substitution: Kniffliges Integrieren
Status: (Frage) beantwortet Status 
Datum: 16:21 Mi 06.05.2009
Autor: Scuria

Aufgabe
Berechnen Sie mit Hilfe einer geeigneten Substitution:
[mm] \integral {x^{2} \wurzel{1-x}dx} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Guten Tag!
Kniffliges Matheblatt. Die Substitutionsmethoden sind klar soweit, das Problem ist das "sehen"
Meine Versuche waren:

x = [mm] 1+u^{2} [/mm] <=> u = [mm] \wurzel{x-1} [/mm]
=> u' = [mm] \bruch{du}{dx} [/mm] <=> dx = [mm] \bruch{du}{\bruch{1}{2\wurzel{x-1}}} [/mm]

eingesetzt ist das dann:

[mm] \integral{(1+u^{2})^{2}\wurzel{u^{2}} 2\wurzel{(1+u^{2}-1)}du} [/mm]

Sieht toll aus , ist aber irgendwie Schrott... Vllt mach ich auch was falsch?
DANKE schonmal ...
Die Scu

        
Bezug
Integration durch Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 16:31 Mi 06.05.2009
Autor: leduart

Hallo
Wenn du einen Schritt weiter gerechnet haettest saeh es wirklich gut aus. dann steht da im Intgrand [mm] (1-u^2)^2*u^2 [/mm]
und das kannst du wohl?
gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]