www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Integralfunktion
Integralfunktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:50 Mi 07.05.2014
Autor: DesterX

Hallo zusammen,
ich habe folgende Aussage gefunden, die ich leider nicht nachvollziehen kann.
Es [mm] $h(t):=\int_{-\infty}^{t} [/mm] g(t-s)f(s) \ ds$.
Wir nehmen an, dass f und g so gewählt sind, dass obiges Integral für alle [mm] $t\geq [/mm] 0$ existiert. Ferner sei g diff'bar und $f(0)=0$.
Nun soll gelten:
$dh = g(0)f(t) \ dt  \ + \ [mm] \int_{-\infty}^{t} [/mm] g'(t-s)f(s)ds \ dt.$
Kann mir jemand erklären, wie man auf diesen Ausdruck genau kommt?
Vielen Dank vorab für eure Hilfe,
Dester


        
Bezug
Integralfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 08:09 Do 08.05.2014
Autor: Richie1401

Hallo,

zu bestimmen ist ja [mm] \frac{dh(t)}{dt}. [/mm]

Lasse also mal Leibniz auf das Integral los:

[]http://de.wikipedia.org/wiki/Parameterintegral#Leibnizregel_f.C3.BCr_Parameterintegrale

Bezug
                
Bezug
Integralfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:30 Do 08.05.2014
Autor: DesterX

Hallo,
danke Richie für deine Antwort. Das sieht erstmal sehr vielversprechend aus - macht aber hier nicht die untere Grenze [mm] $-\infty$ [/mm] alles zunichte?
Grüße
Dester

Bezug
                        
Bezug
Integralfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:10 Sa 10.05.2014
Autor: fred97


> Hallo,
>  danke Richie für deine Antwort. Das sieht erstmal sehr
> vielversprechend aus - macht aber hier nicht die untere
> Grenze [mm]-\infty[/mm] alles zunichte?

Hierdrin

http://www.math.uni-leipzig.de/UAA/f/WS12XX31925.pdf

geht es u.a. auch um uneigentliche Parameterintegrale

FRED

>  Grüße
>  Dester


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]