Integralaufgabe < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:32 Di 23.04.2013 | Autor: | Mopsi |
Eine weitere Aufgabe habe ich noch:
[mm] \int_{0}^{ \frac{\pi}{2}} \int_{0}^{ \frac{\pi}{2}} sin(x) + cos(y) dxdy[/mm]
Das cos(y) darf ich doch vor das innere Integral schreiben, da es nicht von x abhängt?
Oder darf ich das nur bei Produkten?
[mm] \int_{0}^{ \frac{\pi}{2}} \int_{0}^{ \frac{\pi}{2}} sin(x) + cos(y) dxdy = \int_{0}^{ \frac{\pi}{2}} cos(y) + \int_{0}^{ \frac{\pi}{2}} \left[-cos(x)\right]_0^{\frac{\pi}{2}} dy = \int_{0}^{ \frac{\pi}{2}} cos(y) - 1 = -1 + \left[ sin(y)\right]_0^{\frac{\pi}{2}} = -1 + 1 = 0[/mm]
Bei Wolfram kommt pi heraus...
Was habe ich falsch gemacht?
Mopsi
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:30 Mi 24.04.2013 | Autor: | notinX |
Hallo,
> Eine weitere Aufgabe habe ich noch:
>
> [mm]\int_{0}^{ \frac{\pi}{2}} \int_{0}^{ \frac{\pi}{2}} sin(x) + cos(y) dxdy[/mm]
>
> Das cos(y) darf ich doch vor das innere Integral schreiben,
> da es nicht von x abhängt?
nein, das darfst Du nicht - erlaubt ist aber:
[mm] $\int_{0}^{\frac{\pi}{2}}\int_{0}^{\frac{\pi}{2}}\sin x+\cos y\,\mathrm{d}x\mathrm{d}y=\int_{0}^{\frac{\pi}{2}}\int_{0}^{\frac{\pi}{2}}\sin x\,\mathrm{d}x\mathrm{d}y+\int_{0}^{\frac{\pi}{2}}\int_{0}^{\frac{\pi}{2}}\cos y\,\mathrm{d}x\mathrm{d}y$
[/mm]
> Oder darf ich das nur bei Produkten?
>
> [mm]\int_{0}^{ \frac{\pi}{2}} \int_{0}^{ \frac{\pi}{2}} sin(x) + cos(y) dxdy = \int_{0}^{ \frac{\pi}{2}} cos(y) + \int_{0}^{ \frac{\pi}{2}} \left[-cos(x)\right]_0^{\frac{\pi}{2}} dy = \int_{0}^{ \frac{\pi}{2}} cos(y) - 1 = -1 + \left[ sin(y)\right]_0^{\frac{\pi}{2}} = -1 + 1 = 0[/mm]
>
>
> Bei Wolfram kommt pi heraus...
> Was habe ich falsch gemacht?
>
> Mopsi
Gruß,
notinX
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 00:44 Mi 24.04.2013 | Autor: | Mopsi |
Hallo notin :)
> [mm]\int_{0}^{\frac{\pi}{2}}\int_{0}^{\frac{\pi}{2}}\sin x+\cos y\,\mathrm{d}x\mathrm{d}y=\int_{0}^{\frac{\pi}{2}}\int_{0}^{\frac{\pi}{2}}\sin x\,\mathrm{d}x\mathrm{d}y+\int_{0}^{\frac{\pi}{2}}\int_{0}^{\frac{\pi}{2}}\cos y\,\mathrm{d}x\mathrm{d}y[/mm]
[mm]\int_{0}^{\frac{\pi}{2}}\int_{0}^{\frac{\pi}{2}}\sin x+\cos y\,\mathrm{d}x\mathrm{d}y=\int_{0}^{\frac{\pi}{2}}\int_{0}^{\frac{\pi}{2}}\sin x\,\mathrm{d}x\mathrm{d}y+\int_{0}^{\frac{\pi}{2}}\int_{0}^{\frac{\pi}{2}}\cos y\,\mathrm{d}x\mathrm{d}y = \int_{0}^{ \frac{\pi}{2}}-1dy + \int_{0}^{ \frac{\pi}{2}}1dy = - \frac{\pi}{2} + \frac{\pi}{2} = 0[/mm]
Nun kommt wieder nicht pi heraus, habe ich etwas falsch, oder kann ich Wolfram nicht richtig bedienen? :P
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:06 Mi 24.04.2013 | Autor: | Loddar |
Hallo Mopsi!
Bitte eröffne für neue Aufgaben auch einen neuen / eigenständigen Thread.
Ich habe das jetzt mal getrennt.
> [mm]\int_{0}^{\frac{\pi}{2}}\int_{0}^{\frac{\pi}{2}}\sin x+\cos y\,\mathrm{d}x\mathrm{d}y=\int_{0}^{\frac{\pi}{2}}\int_{0}^{\frac{\pi}{2}}\sin x\,\mathrm{d}x\mathrm{d}y+\int_{0}^{\frac{\pi}{2}}\int_{0}^{\frac{\pi}{2}}\cos y\,\mathrm{d}x\mathrm{d}y = \int_{0}^{ \frac{\pi}{2}}-1dy + \int_{0}^{ \frac{\pi}{2}}1dy = - \frac{\pi}{2} + \frac{\pi}{2} = 0[/mm]
Dein zweites Teilintegral ist nicht richtig.
Es gilt (für das innere Integral):
[mm] $\integral_{0}^{\bruch{\pi}{2}}{\cos(y) \ \mathrm{d}x} [/mm] \ = \ [mm] \cos(y)*\integral_{0}^{\bruch{\pi}{2}}{1 \ \mathrm{d}x} [/mm] \ = \ [mm] \cos(y)*\left[ \ x \ \right]_{0}^{\bruch{\pi}{2}} [/mm] \ = \ [mm] \cos(y)*\bruch{\pi}{2}$
[/mm]
Gruß
Loddar
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 20:06 Do 25.04.2013 | Autor: | Mopsi |
Hallo Loddar :)
> Bitte eröffne für neue Aufgaben auch einen neuen /
> eigenständigen Thread.
> Ich habe das jetzt mal getrennt.
Auch wenn es der gleiche Aufgabentyp ist?
> > [mm]\int_{0}^{\frac{\pi}{2}}\int_{0}^{\frac{\pi}{2}}\sin x \cos y\,\mathrm{d}x\mathrm{d}y=\int_{0}^{\frac{\pi}{2}}\int_{0}^{\frac{\pi}{2}}\sin x\,\mathrm{d}x\mathrm{d}y \int_{0}^{\frac{\pi}{2}}\int_{0}^{\frac{\pi}{2}}\cos y\,\mathrm{d}x\mathrm{d}y = \int_{0}^{ \frac{\pi}{2}}-1dy \int_{0}^{ \frac{\pi}{2}}1dy = - \frac{\pi}{2} \frac{\pi}{2} = 0[/mm]
> Dein zweites Teilintegral ist nicht richtig.
>
> Es gilt (für das innere Integral):
>
> [mm]\integral_{0}^{\bruch{\pi}{2}}{\cos(y) \ \mathrm{d}x} \ = \ \cos(y)*\integral_{0}^{\bruch{\pi}{2}}{1 \ \mathrm{d}x} \ = \ \cos(y)*\left[ \ x \ \right]_{0}^{\bruch{\pi}{2}} \ = \ \cos(y)*\bruch{\pi}{2}[/mm]
Ich probiere es nochmal:
[mm]\int_{0}^{\frac{\pi}{2}}\int_{0}^{\frac{\pi}{2}}\sin x\,\mathrm{d}x\mathrm{d}y+\int_{0}^{\frac{\pi}{2}}\int_{0}^{\frac{\pi}{2}}\cos y\,\mathrm{d}x\mathrm{d}y = \int_{0}^{\frac{\pi}{2}} 1dy + \int_{0}^{\frac{\pi}{2}}cos(y)* \frac{ \pi}{2}dy = \frac{ \pi}{2} + \frac{ \pi}{2}*\left[sin(y)\right]_0^{\frac{ \pi}{2}} = \frac{ \pi}{2} + \frac{ \pi}{2} = \pi[/mm]
Mopsi
|
|
|
|
|
Hallo Mopsi,
> > Bitte eröffne für neue Aufgaben auch einen neuen /
> > eigenständigen Thread.
> > Ich habe das jetzt mal getrennt.
>
> Auch wenn es der gleiche Aufgabentyp ist?
Ja, bitte.
[mm]\int_{0}^{\frac{\pi}{2}}\int_{0}^{\frac{\pi}{2}}\sin x \cos y\,\mathrm{d}x\mathrm{d}y=\int_{0}^{\frac{\pi}{2}}\int_{0}^{\frac{\pi}{2}}\sin x\,\mathrm{d}x\mathrm{d}y \int_{0}^{\frac{\pi}{2}}\int_{0}^{\frac{\pi}{2}}\cos y\,\mathrm{d}x\mathrm{d}y = \int_{0}^{ \frac{\pi}{2}}-1dy \int_{0}^{ \frac{\pi}{2}}1dy = - \frac{\pi}{2} \frac{\pi}{2} = 0[/mm]
>
>
> > Dein zweites Teilintegral ist nicht richtig.
> >
> > Es gilt (für das innere Integral):
> >
> > [mm]\integral_{0}^{\bruch{\pi}{2}}{\cos(y) \ \mathrm{d}x} \ = \ \cos(y)*\integral_{0}^{\bruch{\pi}{2}}{1 \ \mathrm{d}x} \ = \ \cos(y)*\left[ \ x \ \right]_{0}^{\bruch{\pi}{2}} \ = \ \cos(y)*\bruch{\pi}{2}[/mm]
>
>
> Ich probiere es nochmal:
>
> [mm]\int_{0}^{\frac{\pi}{2}}\int_{0}^{\frac{\pi}{2}}\sin x\,\mathrm{d}x\mathrm{d}y+\int_{0}^{\frac{\pi}{2}}\int_{0}^{\frac{\pi}{2}}\cos y\,\mathrm{d}x\mathrm{d}y = \int_{0}^{\frac{\pi}{2}} 1dy + \int_{0}^{\frac{\pi}{2}}cos(y)* \frac{ \pi}{2}dy = \frac{ \pi}{2} + \frac{ \pi}{2}*\left[sin(y)\right]_0^{\frac{ \pi}{2}} = \frac{ \pi}{2} + \frac{ \pi}{2} = \pi[/mm]
Viel besser.
Sagt Dir Fubini-Tonelli etwas? Dann könntest Du die Rechnung noch etwas abkürzen. Wenn nicht, ist es aber auch nicht tragisch.
Grüße
reverend
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:27 Do 25.04.2013 | Autor: | Mopsi |
> Hallo Mopsi,
>
> > > Bitte eröffne für neue Aufgaben auch einen neuen /
> > > eigenständigen Thread.
> > > Ich habe das jetzt mal getrennt.
> >
> > Auch wenn es der gleiche Aufgabentyp ist?
>
> Ja, bitte.
Okay :)
> Viel besser.
> Sagt Dir Fubini-Tonelli etwas? Dann könntest Du die
> Rechnung noch etwas abkürzen. Wenn nicht, ist es aber auch
> nicht tragisch.
Also mir fällt dazu nur Tortellini ein :D
Danke für die Hilfe :)
Mopsi
|
|
|
|