www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integral berechnen
Integral berechnen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:33 Mi 13.08.2008
Autor: Idefix08

Aufgabe
[mm] \integral_{}^{}{e^{x}*cos(x)} [/mm]

Hallo,
bin wie folgt vorgegangen:
Durch partielle Integration
                            u=cos(x) u´=-sin(x)
                            [mm] v=e^x v´=e^x [/mm]
[mm] cos(x)*e^{x}-\integral_{}^{}{e^{x}*-sin(x)} [/mm]

Jetzt hab ich noch mal integriert:
                            u=-sin(x) u´=-cos(x)
                            [mm] v=e^x v´=e^x [/mm]

[mm] cos(x)*e^{x}+sin(x)*e^{x}-\integral_{}^{}{e^{x}*-cos(x)} [/mm]

Wie bekomme ich die Aufgabe gelöst? Gibts da nen Trick?
Könnte sonst ja bis ins unendliche weiter integrieren...

Gruß Idefix

        
Bezug
Integral berechnen: Hinweis
Status: (Antwort) fertig Status 
Datum: 11:53 Mi 13.08.2008
Autor: Loddar

Hallo Idefix!


Bei der 2. partiellen Integration solltest Du erst das Minusziechen vor das Integral ziehen und nur $u \ := \ [mm] \sin(x)$ [/mm] setzen.

Anschließend erhält man auf der rechten Seite wiederum dasselbe Integral wie das Ausgangsintegral.

Damit kannst Du dann die Gleichung nach dem gesuchten Integral umstellen.


Gruß
Loddar


Bezug
                
Bezug
Integral berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:03 Mi 13.08.2008
Autor: Idefix08

Danke für die schnelle Antwort.
Ich kann dir folgen und erhalte dann

[mm] cos(x)*e^x+sin(x)*e^x-\integral e^x*cos(x) [/mm]

Bloß wie stelle ich jetzt denn nach dem gesuchten Integral um?





Bezug
                        
Bezug
Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:13 Mi 13.08.2008
Autor: mathmetzsch

Hallo,

ich glaube, du hast Loddar nicht richtig verstanden. Schau dir mal in []diesem Wikipedia-Artikel Beispiel 1 an. Genauso ist das gemeint!!

Grüße, Daniel

Bezug
        
Bezug
Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:04 Mi 13.08.2008
Autor: M.Rex

Hallo

Du hast:

[mm] \integral e^x\cdot{}cos(x)=cos(x)\cdot{}e^x+sin(x)\cdot{}e^x-\integral e^x\cdot{}cos(x) [/mm]
[mm] \gdw 2*\integral e^x\cdot{}cos(x)=cos(x)\cdot{}e^x+sin(x)\cdot{}e^x [/mm]
[mm] \gdw \integral e^x\cdot{}cos(x)=\bruch{cos(x)\cdot{}e^x+sin(x)\cdot{}e^x}{2} [/mm]

Dieser Trick ist häufig im Zusammenhang mit [mm] \sin [/mm] und [mm] \cos [/mm] zu verwenden, da sich die Ableitungen wiederholen:

[mm] f(x)=\sin(x) [/mm]
[mm] f'(x)=\cos(x) [/mm]
[mm] f^{(2)}(x)=-\sin(x) [/mm]
[mm] f^{(3)}(x)=-\cos(x) [/mm]
[mm] f^{(4)}(x)=\sin(x)(=f(x)) [/mm]

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]