www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integral
Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Korrektur
Status: (Frage) beantwortet Status 
Datum: 11:18 Sa 24.07.2010
Autor: dr_geissler

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Zeigen Sie, dass folgendes Integral existiert und werten Sie es aus:

$\integral_{1}^{\infty}{\bruch{log(t)}{t^2}}dt$

Durch partielle integration folgt


$\integral_{1}^{R}{\bruch{log(t)}{t^2}}dt=\left[-\bruch{log(t)}{t}\right]-\integral_{1}^{R}{-\bruch{1}{t^2}$

$=\left[-\bruch{log(t)}{t}-\bruch{1}{t}\right]_{1}^{R}$
$=\underbrace{-\bruch{1}{R}}_{\to 0}+\underbrace{\bruch{log(R)}{R}}_{\to 0}+1$=1


Stimmt das?

        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 11:32 Sa 24.07.2010
Autor: schachuzipus

Hallo dr_geissler,

> Zeigen Sie, dass folgendes Integral existiert und werten
> Sie es aus:
>  
> [mm]\integral_{1}^{\infty}{\bruch{log(t)}{t^2}}dt[/mm]
>  Durch partielle integration folgt
>  
>
> [mm]\integral_{1}^{R}{\bruch{log(t)}{t^2}}dt=\left[-\bruch{log(t)}{t}\right]-\integral_{1}^{R}{-\bruch{1}{t^2}[/mm]
>  
> [mm]=\left[-\bruch{log(t)}{t}-\bruch{1}{t}\right]_{1}^{R}[/mm] [ok]
>  [mm]=\underbrace{-\bruch{1}{R}}_{\to 0}\red{+}\underbrace{\bruch{log(R)}{R}}_{\to 0}+1[/mm]=1 [ok]

Das [mm] $\red{+}$ [/mm] müsste wohl ein [mm] $\red{-}$ [/mm] sein, oder?

Aber ändert nix am Ergebnis.

Außerdem würde ich kurz begründen, warum denn [mm] $\lim\limits_{R\to\infty}\frac{\ln(R)}{R}=0$ [/mm] ist ...

>
> Stimmt das? [daumenhoch]

Jo!

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]