www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Injektiv/Surjektiv
Injektiv/Surjektiv < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injektiv/Surjektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:08 Mo 01.10.2012
Autor: Hellfrog

Aufgabe
Sind $A$,$B$ nichtleere, endliche Mengen mit gleich vielen Elementen (d.h. von gleicher Mächtigkeit), so ist eine Abbildung $A [mm] \to [/mm] B$ genau dann injektiv, wenn $f$ surjektiv ist.

hallo

ich habe mich mal an dieser aufgabe versucht, weiß aber leider nicht ob das auch so richtig ist. hoffe das mir da jemand helfen kann

Rück-Richtung

$f$ surjektiv: [mm] \forall [/mm] b [mm] \in [/mm] B [mm] \exists [/mm] a [mm] \in [/mm] A mit [mm] f^{-1}(b) [/mm] = a, da $|A| = |B|$ [mm] \Rightarrow [/mm] $f$ injektiv


Hin-Richtung

$f$ injektiv: [mm] \forall [/mm] a [mm] \in [/mm] A [mm] \exists! [/mm] b [mm] \in [/mm] B mit f(a) = b, da $|A| = |B|$ [mm] \Rightarrow [/mm] $f$ surjektiv


bin mir nicht sicher ob das wirklich langt um das verlangte zu zeigen und somit die aufgabe zu lösen.

danke schonmal im voraus

        
Bezug
Injektiv/Surjektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 18:56 Mo 01.10.2012
Autor: Helbig

Hallo Hellfrog,

>  
> ich habe mich mal an dieser aufgabe versucht, weiß aber
> leider nicht ob das auch so richtig ist. hoffe das mir da
> jemand helfen kann
>  
> Rück-Richtung
>  

> [mm]f[/mm] surjektiv: [mm]\forall b\in B \exists a\in A mit f^{-1}(b)= a[/mm], da [mm]|A| = |B|[/mm] [mm]\Rightarrow[/mm]  [mm]f[/mm] injektiv

[mm] $f^{-1}$ [/mm] ist nur definiert, wenn $f$ bijektiv ist. Hier hast Du also die Behauptung vorausgesetzt.

>  
>
> Hin-Richtung
>  
> [mm]f[/mm] injektiv: [mm]\forall[/mm] a [mm]\in[/mm] A [mm]\exists![/mm] b [mm]\in[/mm] B mit f(a) = b,
> da [mm]|A| = |B|[/mm] [mm]\Rightarrow[/mm]  [mm]f[/mm] surjektiv

Ich sehe noch nicht, wie Du jeweils aus $|A|=|B|$ die Behauptung folgerst.

Dies müßte man wohl näher erläutern, gestützt auf Definitionen und Sätzen Eurer Vorlesung.

Vielleicht kannst Du für die Hinrichtung so argumentieren:

Ist $f$ injektiv, so ist die Abbildung [mm] $g\colon A\to [/mm] f(A),\ [mm] x\mapsto [/mm] f(x)$ bijektiv, d. h. $|A|=|f(A)|$. Wäre $f$ nicht surjektiv, so wäre $f(A)$ eine echte Teilmenge von $B$, also $|A|< |B|$ im Widerspruch zur Voraussetzung.

Gruß,
Wolfgang


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]