www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Induktionsbeweise" - Induktion, Beweisverfahren
Induktion, Beweisverfahren < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktion, Beweisverfahren: Beweisen einer Formel durch In
Status: (Frage) beantwortet Status 
Datum: 15:55 Di 11.02.2014
Autor: WeirdPupil

Aufgabe
(Siehe Link-Anhang)

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.onlinemathe.de/forum/Beweisen-einer-Formel-durch-Induktion

Ich habe eine Aufgabe zum Thema Beweisverfahren, genauergesagt: Induktion.

Sie lautet:

Betrachten Sie die Summe

sn=1+3+5+7...+(2n−1) sn=1+3+5+7...+(2n−1)

das heißt die SUmme der ersten n ungeraden Zahlen. Bilden Sie die Summen

s1, s2⁢, s3,s4,  s1, s2⁢, s3,s4, 

usw. so lange, bis Sie eine allgemeine Formel für sn erkennen. Beweisen Sie die Gültigkeit dieser Formel dann durch vollständige Induktion.

Aufgabenstellung eingescant:

http://s7.directupload.net/images/140211/auvptio5.jpg

Lösung eingescant:

http://s7.directupload.net/images/140211/6olvusvp.jpg

Wie in der angehängten Lösung zu sehen ist, wird

sn= n2⁢   sn= n2⁢  


Für⁢      alle⁢        n⁢  ∈   N∗ Für⁢      alle⁢        n⁢  ∈   N∗

Wie kommt man denn auf diese "Formel"?! Außerdem lassen sich doch mit ihr nur gerade Zahlen darstellen?

Bsp.:

s2=22 s2=22


s2=4 s2=4

aber

4 ist keine ungerade Zahl!

Würde mich über eine Erläuterung der Lösung sehr freuen...

        
Bezug
Induktion, Beweisverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 Di 11.02.2014
Autor: schachuzipus

Hallo,

> (Siehe Link-Anhang)
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:

>

> http://www.onlinemathe.de/forum/Beweisen-einer-Formel-durch-Induktion

>

> Ich habe eine Aufgabe zum Thema Beweisverfahren,
> genauergesagt: Induktion.

>

> Sie lautet:

>

> Betrachten Sie die Summe

>

> sn=1+3+5+7...+(2n−1) sn=1+3+5+7...+(2n−1)

>

> das heißt die SUmme der ersten n ungeraden Zahlen. Bilden
> Sie die Summen

>

> s1, s2⁢, s3,s4,  s1, s2⁢, s3,s4, 

>

> usw. so lange, bis Sie eine allgemeine Formel für sn
> erkennen. Beweisen Sie die Gültigkeit dieser Formel dann
> durch vollständige Induktion.

>

> Aufgabenstellung eingescant:

>

> http://s7.directupload.net/images/140211/auvptio5.jpg

>

> Lösung eingescant:

>

> http://s7.directupload.net/images/140211/6olvusvp.jpg

Was spricht dagegen, die paar Zeilen hier einzutippen?

So kann man nix dran schreiben und du wälzt die Arbeit des Eintippens auf die Antwortgeber ab ...

>

> Wie in der angehängten Lösung zu sehen ist, wird

>

> sn= n2⁢   sn= n2⁢  

Da steht doch [mm]s_n=n^2[/mm]  <-- klick mal drauf, dann siehst du, wie man das eintippt

>
>

> Für⁢      alle⁢        n⁢  ∈   N∗
> Für⁢      alle⁢        n⁢  ∈   N∗

>

> Wie kommt man denn auf diese "Formel"?!

Na durch Ausprobieren. Man bildet mal [mm]s_1,s_2,...,s_5[/mm] und guckt, welches Schema sich erkennen lässt ...

> Außerdem lassen
> sich doch mit ihr nur gerade Zahlen darstellen?

>

> Bsp.:

>

> s2=22 s2=22

>
>

> s2=4 s2=4

>

> aber

>

> 4 ist keine ungerade Zahl!

Na und? [mm]s_2[/mm] bezeichnet ja auch die Summe der ersten 2 ungeraden Zahlen, also [mm]1+3[/mm]. Und das ist 4 ...

Weiterer Test: Nehmen wir [mm]n=5[/mm] und gucken uns [mm]s_n=s_5[/mm] an:

[mm]s_5=5^2[/mm] sollte passen:



[mm]s_5[/mm] ist die Summe der ersten 5 ungeraden Zahlen, also [mm]s_5=1+3+5+7+9=25=5^2=n^2[/mm] - wunderbar ...

>

> Würde mich über eine Erläuterung der Lösung sehr
> freuen...

Der Induktionsschritt ist dir klar?

Wenn nicht, sage, was genau dir noch unklar ist, dann können wir weitersehen ...

Gruß


schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]