Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Beweise das für alle x,y [mm] \in \IR [/mm]
[mm] x^{n+1}-y^{n+1}= (x-y)*(x^{n}+x^{n-1}y [/mm] + [mm] x^{n-2}+.....xy^{n-1}+y^{n} [/mm] |
Wir haben mit Eins bewiesen und mit Induktionsschritt +1 erweitert...
Wir haben nun ein großes Problem mit einer entsprechender Kürzung, so dass auf beiden Seiten das gleiche stehen könnte....
|
|
|
|
> Beweise das für alle x,y [mm]\in \IR[/mm]
> [mm]x^{n+1}-y^{n+1}= (x-y)*(x^{n}+x^{n-1}y[/mm] +
> [mm]x^{n-2}+.....xy^{n-1}+y^{n}[/mm]
> Wir haben mit Eins bewiesen und mit Induktionsschritt +1
> erweitert...
Hallo,
so 100-pro klar ist mir nicht, was Ihr bisher getan habt. Schreibt es nächstes Mal mit auf, man erkennt dann einfach besser, wo Denk- und sonstige Fehler stecken oder ob eigentlich alles klar ist, und nur ein kleines rechentechnisches Problem vorliegt.
Ihr solltet gezeigt haben, daß die Aussage für n=1 gilt, das meinst Du vielleicht.
Dann ist unter der Voraussetzung, daß
[mm]x^{n+1}-y^{n+1}= (x-y)*(x^{n}+x^{n-1}y[/mm] + [mm]x^{n-2}y^2+.....xy^{n-1}+y^{n})[/mm] für alle n [mm] \in \IN [/mm] richtig ist, zu zeigen, daß die Aussage auch für n+1 gilt.
Also
Induktionsschluß:
zu zeigen : Es ist [mm]x^{n+2}-y^{n+2}= (x-y)*(x^{n+1}+x^{n}y[/mm] + [mm]x^{n-1}y^2+x^{n-2}y^3.....xy^{n}+y^{n+1})[/mm] für alle n [mm] \in \IN [/mm]
Irgendwie habe ich den Verdacht, daß Ihr diese Gleichung genommen habt und an beiden Seiten rumgemuckelt - so geht das nicht! Man startet mit einer Seite und formt unter Zuhilfenahme der I.V. so lange um, bis am Ende die andere Seite dasteht.
Hier finde ich es viel einfacher, mit der rechten Seite zu beginnen.
[mm] (x-y)*(x^{n+1}+x^{n}y+x^{n-1}y^2+x^{n-2}y^3.....xy^{n}+y^{n+1})
[/mm]
= ??? (nun schaue ich scharf drauf und versuche, in die Nähe der I.V. zu kommen)
= [mm] (x-y)(x*(x^{n}+x^{n-1}y+x^{n-2}y^2+x^{n-3}y^3.....y^{n})+y^{n+1})
[/mm]
=...
Nun muß man die I.V. einsetzen und zu Ende rechnen.
Gruß v. Angela
|
|
|
|