www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Indices aufloesbarer Gruppen
Indices aufloesbarer Gruppen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Indices aufloesbarer Gruppen: Tip
Status: (Frage) überfällig Status 
Datum: 08:47 Do 17.11.2011
Autor: hippias

Aufgabe
Es sei $G$ eine endliche, aufloesbare Gruppe mit [mm] $\Phi(G)= [/mm] 1$ und sei [mm] $M\leq [/mm] G$ maximal. Dann gibt es zu jedem [mm] $U\leq [/mm] M$ ein [mm] $X\leq [/mm] G$ mit $|M:U|= |G:X|$.

Ich sehe die Behauptung nur in Spezialfaellen ein (z.B. U= M, U=1), sehe jedoch nicht, wie ich das als Induktionsanfang nutzen koennte. Den einzigen Nutzen von [mm] $\Phi(G)=1$, [/mm] der mir hier sinnvoll erscheint, ist die Existenz einer maximalen Untergruppe, die nicht $U$ enthaelt, wenn $U>1$. Ich vermute auch stark, dass man die Existenz von Hall-Untergruppen benutzen muesste, aber ich weiss nicht richtig, wie.

Also: wie kann man die Behauptung zeigen?

Ich habe die Frage sonst nirgends im Internet gestellt.

        
Bezug
Indices aufloesbarer Gruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:58 Fr 18.11.2011
Autor: felixf

Moin,

> Es sei [mm]G[/mm] eine endliche, aufloesbare Gruppe mit [mm]\Phi(G)= 1[/mm]
> und sei [mm]M\leq G[/mm] maximal. Dann gibt es zu jedem [mm]U\leq M[/mm] ein
> [mm]X\leq G[/mm] mit [mm]|M:U|= |G:X|[/mm].

was genau ist denn [mm] $\Phi(G)$? [/mm]

LG Felix


Bezug
                
Bezug
Indices aufloesbarer Gruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:44 So 20.11.2011
Autor: hippias

[mm] $\Phi(G)$ [/mm] ist der Durchschnitt aller maximalen Untergruppen der Gruppe $G$.

Bezug
                        
Bezug
Indices aufloesbarer Gruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:26 Mo 21.11.2011
Autor: felixf

Moin!

> [mm]\Phi(G)[/mm] ist der Durchschnitt aller maximalen Untergruppen
> der Gruppe [mm]G[/mm].

Hmm. Stimmt die Aufgabe ueberhaupt?

Was ist, wenn ich $G = [mm] A_4$ [/mm] nehme? Dann hat $G$ 12 Elemente und ist aufloesbar. Da $G$ keine Untergruppe der Ordnung 6 hat, muessen alle Untergruppen die Ordnungen 1, 2, 3, 4, 12 haben. Maximale Untergruppen haben also die Ordnung 3 und 4 (2 geht nicht wegen Sylow). Wenn man also den Schnitt aller maximalen Untergruppen nimmt, kann dieser nur Elemente der Ordnung 1 enthalten, womit [mm] $\Phi(G) [/mm] = 1$ ist.

Sei nun $M$ eine vierelementige Untergruppe von $G$. Diese ist maximal, und es gibt ein $U [mm] \le [/mm] M$ mit $|M:U| = 2$. Wenn die Aufgabe stimmen wuerde, muesste es ein $X [mm] \le [/mm] G$ mit $|G:X| = |M:U| = 2$ geben - was aber nicht geht, da $G$ keine Untergruppe der Ordnung 6 hat.

Oder habe ich etwas uebersehen?

LG Felix


Bezug
                                
Bezug
Indices aufloesbarer Gruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:44 Mo 21.11.2011
Autor: hippias

Danke fuer das Gegenbeispiel! Es ist insofern beruhigend, als dass mir der Beweis dieser Behauptung schwergefallen ist, andererseits habe ich eben diese benutzt,um etwas anderes zu zeigen. Allerdings wuesste ich gerne, wie die Bedingungen abgeaendert werden muessten, damit die Schlussfolgerung stimmt, denn ich vermute da ist nur ein kleiner Fehler in der Formulierung. Beim ersten Lesen, hatte ich mich verlesen und wollte die Existenz einer Untergruppe, deren Ordnung gleich dem Index ist, nachweisen, aber das ist ja auch verkehrt.

Bezug
        
Bezug
Indices aufloesbarer Gruppen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:20 Sa 19.11.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]