www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Identische Strecken: Rand
Identische Strecken: Rand < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Identische Strecken: Rand: Beweis: Ränder identisch
Status: (Frage) beantwortet Status 
Datum: 22:55 Mi 03.05.2006
Autor: Leto

Aufgabe
Sei [mm]V[/mm] ein Vektorraum über [mm]\IR[/mm] und [mm]a, b \in V[/mm]. Wir definieren die Strecke zwischen [mm]a[/mm] und [mm]b[/mm] als die Menge [mm]\bar{ab} := \left\{a + t(b-a) : t \in \left\[0,1\right\]\right\} \subset V[/mm]. Mit dem Rand der Strecke bezeichnen wir die Menge [mm]\partial\left(\bar{ab}\right) := \left\{a,b\right\}[/mm].
Seien nun [mm]c,d \in V[/mm] sodass [mm]\bar{ab} = \bar{cd}[/mm]. Zeigen Sie, dass die Ränder [mm]\partial\left(\bar{ab}\right) = \partial\left(\bar{cd}\right)[/mm] übereinstimmen müssen.

Hallo liebe Leute. So weit so gut, die Aufgabenstellung habe ich verstanden ;-)

Der erste Ansatz war: Da die Strecken gleich sind, kann ich die Mengen auch gleich schreiben: [mm]\bar{cd} = \left \{ a + t(b-a) : t \in \left\[0,1\right\]\right\}[/mm].
Damit war ich dann schnell fertig, denn angenommen, [mm]a \ne c[/mm] ergibt sich nach Einsetzen [mm]a = d[/mm] und dann [mm]b = c[/mm]. Darf ich das so machen, oder kann ich nicht annehmen, dass die Strecken nach Definition gleich geschrieben werden können?

Mein zweiter Ansatz sieht so aus: Da die Strecken gleich sind, kann ich ein [mm]\lambda \in \left\[ 0,1\right\] [/mm] finden, sodass (wegen [mm]a \in \bar{bc}[/mm]) gilt: [mm]a = c + \lambda (d-c)[/mm] gilt.
Diese Schreibweise für a in [mm]\bar{ab}[/mm] ergibt dann: Ich kann ein [mm]\mu[/mm] in dem Intervall finden, sodass [mm]a = c + \lambda\left(d-c\right) + \mu\left(b-a\right)[/mm].
Hier komme ich nicht sinnvoll weiter, habe es schon mit Abschätzungen probiert, komme jedoch am Ende auf [mm]a \le b[/mm]... Naja.
Ich danke euch allen im Voraus.
Markus.

P.S.: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Identische Strecken: Rand: Antwort
Status: (Antwort) fertig Status 
Datum: 12:31 Do 04.05.2006
Autor: leduart

Hallo Markus
> Sei [mm]V[/mm] ein Vektorraum über [mm]\IR[/mm] und [mm]a, b \in V[/mm]. Wir
> definieren die Strecke zwischen [mm]a[/mm] und [mm]b[/mm] als die Menge
> [mm]\bar{ab} := \left\{a + t(b-a) : t \in \left\[0,1\right\]\right\} \subset V[/mm].
> Mit dem Rand der Strecke bezeichnen wir die Menge
> [mm]\partial\left(\bar{ab}\right) := \left\{a,b\right\}[/mm].
> Seien nun [mm]c,d \in V[/mm] sodass [mm]\bar{ab} = \bar{cd}[/mm]. Zeigen Sie,
> dass die Ränder [mm]\partial\left(\bar{ab}\right) = \partial\left(\bar{cd}\right)[/mm]
> übereinstimmen müssen.
>  Hallo liebe Leute. So weit so gut, die Aufgabenstellung
> habe ich verstanden ;-)
>  
> Der erste Ansatz war: Da die Strecken gleich sind, kann ich
> die Mengen auch gleich schreiben: [mm]\bar{cd} = \left \{ a + t(b-a) : t \in \left\[0,1\right\]\right\}[/mm].

Ist nach meiner Meinung richtig!  

> Damit war ich dann schnell fertig, denn angenommen, [mm]a \ne c[/mm]
> ergibt sich nach Einsetzen [mm]a = d[/mm] und dann [mm]b = c[/mm]. Darf ich
> das so machen, oder kann ich nicht annehmen, dass die
> Strecken nach Definition gleich geschrieben werden können?

Was setzt du wo ein? Das hab ich nicht verstanden. wenn du das richtig gemacht hast gibts keine Einwände!

> Mein zweiter Ansatz sieht so aus: Da die Strecken gleich
> sind, kann ich ein [mm]\lambda \in \left\[ 0,1\right\][/mm] finden,
> sodass (wegen [mm]a \in \bar{bc}[/mm]) gilt: [mm]a = c + \lambda (d-c)[/mm]
> gilt.
>  Diese Schreibweise für a in [mm]\bar{ab}[/mm] ergibt dann: Ich kann
> ein [mm]\mu[/mm] in dem Intervall finden, sodass [mm]a = c + \lambda\left(d-c\right) + \mu\left(b-a\right)[/mm].

Das ist sicher zuviel Umweg:  und hier muss ja [mm] \mu=0 [/mm] sein!
Gruss leduart

Bezug
                
Bezug
Identische Strecken: Rand: Erklärung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:29 Do 04.05.2006
Autor: Leto

Hallo leduart.
> Hallo Markus

(...)

>  >  
> > Der erste Ansatz war: Da die Strecken gleich sind, kann ich
> > die Mengen auch gleich schreiben: [mm]\bar{cd} = \left \{ a + t(b-a) : t \in \left\[0,1\right\]\right\}[/mm].
>  
> Ist nach meiner Meinung richtig!  
> > Damit war ich dann schnell fertig, denn angenommen, [mm]a \ne c[/mm]
> > ergibt sich nach Einsetzen [mm]a = d[/mm] und dann [mm]b = c[/mm]. Darf ich
> > das so machen, oder kann ich nicht annehmen, dass die
> > Strecken nach Definition gleich geschrieben werden können?
>  Was setzt du wo ein? Das hab ich nicht verstanden. wenn du
> das richtig gemacht hast gibts keine Einwände!

Hier setze ich [mm]a = d[/mm] in der Definition von [mm]\overline{ab}[/mm] ein und nutze die Tatsache, dass [mm]b \in \overline{ab}[/mm] ist.

> (...)

>  Gruss leduart

Danke, leduart, für deine Hilfe. Montag werde ich das noch mit anderen Studis besprechen, kann ich dann hier posten, ob das so geht? Wenn nicht, wo dann - falls das von Interesse ist, natürlich.
Liebe Grüße, Markus.

Bezug
                        
Bezug
Identische Strecken: Rand: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:08 Do 04.05.2006
Autor: leduart

Hallo
was du wo einsetzt hab ich immer noch nicht kapiert! Wenn du einfach a=d einsetzt nimmst du doch die Behauptung vorweg! also folgerst du wenn a=d dann b=c das ist aber nicht was verlangt ist! Also kein Beweis, oder ich hab was übersehen:
Gruss leduart


Bezug
        
Bezug
Identische Strecken: Rand: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:46 Do 04.05.2006
Autor: Leopold_Gast

Bin ich jetzt bescheuert oder leide ich an Wahnvorstellungen?

Wenn in der Mathematik zwei Objekte [mm]X,Y[/mm] - mit Absicht wähle ich diesen schwammigen Begriff, denn was das genau sein soll, ist eigentlich völlig egal - wenn also zwei Objekte gleich sind: [mm]X=Y[/mm], und ich mit diesen dasselbe mache (was durch [mm]\varphi[/mm] ausgedrückt werden soll), dann besteht doch auch hinterher Gleichheit: [mm]\varphi(X) = \varphi(Y)[/mm]. Wenn das einmal nicht mehr gilt, können wir die Mathematik sein lassen.

Und bei dieser Aufgabe ist

[mm]X = \overline{ab} \, , \ \ Y = \overline{cd} \, ; \ \ \ \varphi = \partial[/mm]

Der einzige Sinn, den ich in dieser Aufgabe sehen könnte, wäre, zu zeigen, daß die Punktmenge "Strecke" ihre "Randpunkte" eindeutig bestimmt. Anders gesagt: Der Begriff "Randpunkt" ist so, wie oben festgelegt, wohldefiniert. Wenn das gemeint ist, dann wäre allerdings die Aufgabenformulierung hanebüchen ...

In diesem Fall müßte die Aufgabe wohl korrekt so lauten:

Zeigen Sie:  [mm]\overline{ab} = \overline{cd} \ \ \Rightarrow \ \ \left\{ a , b \right\} = \left\{ c , d \right\}[/mm]

Und erst wenn das nachgewiesen wäre, könnte man dann [mm]\partial[/mm] definieren.

Auf was die Leute so alles kommen ...

Bezug
        
Bezug
Identische Strecken: Rand: Musterlösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:30 Fr 05.05.2006
Autor: Leto

Okay, ich habe jetzt die Musterlösung.
Mein Ansatz war wohl so falsch nicht, ich konnte ihn jedoch nicht so geschickt formulieren...

Vielleicht bekomme ich dennoch ein paar Punkte.

Die Musterlösung liegt als PDF hier:  []Musterlösung PDF
Es ging um Aufgabe zwei.

Danke nochmal.

Und Leopold: Naja, ich glaube unser Prof hat nicht wirklich lust, LA zu machen, eigentlich ist er Topologe. Im kommentierten Vorlesungsverzeichnis hat er angegeben:
Die Vorlesung ist ein Experiment und genau weiss ich selber nicht, was ich machen werde. Es soll um die Geometrie von Teilmengen des [mm]\IR^n[/mm] bzw. [mm]\IC^n[/mm] gehen. Naja. Soviel dazu... ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]