Identische Strecken: Rand < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:55 Mi 03.05.2006 | Autor: | Leto |
Aufgabe | Sei [mm]V[/mm] ein Vektorraum über [mm]\IR[/mm] und [mm]a, b \in V[/mm]. Wir definieren die Strecke zwischen [mm]a[/mm] und [mm]b[/mm] als die Menge [mm]\bar{ab} := \left\{a + t(b-a) : t \in \left\[0,1\right\]\right\} \subset V[/mm]. Mit dem Rand der Strecke bezeichnen wir die Menge [mm]\partial\left(\bar{ab}\right) := \left\{a,b\right\}[/mm].
Seien nun [mm]c,d \in V[/mm] sodass [mm]\bar{ab} = \bar{cd}[/mm]. Zeigen Sie, dass die Ränder [mm]\partial\left(\bar{ab}\right) = \partial\left(\bar{cd}\right)[/mm] übereinstimmen müssen. |
Hallo liebe Leute. So weit so gut, die Aufgabenstellung habe ich verstanden
Der erste Ansatz war: Da die Strecken gleich sind, kann ich die Mengen auch gleich schreiben: [mm]\bar{cd} = \left \{ a + t(b-a) : t \in \left\[0,1\right\]\right\}[/mm].
Damit war ich dann schnell fertig, denn angenommen, [mm]a \ne c[/mm] ergibt sich nach Einsetzen [mm]a = d[/mm] und dann [mm]b = c[/mm]. Darf ich das so machen, oder kann ich nicht annehmen, dass die Strecken nach Definition gleich geschrieben werden können?
Mein zweiter Ansatz sieht so aus: Da die Strecken gleich sind, kann ich ein [mm]\lambda \in \left\[ 0,1\right\] [/mm] finden, sodass (wegen [mm]a \in \bar{bc}[/mm]) gilt: [mm]a = c + \lambda (d-c)[/mm] gilt.
Diese Schreibweise für a in [mm]\bar{ab}[/mm] ergibt dann: Ich kann ein [mm]\mu[/mm] in dem Intervall finden, sodass [mm]a = c + \lambda\left(d-c\right) + \mu\left(b-a\right)[/mm].
Hier komme ich nicht sinnvoll weiter, habe es schon mit Abschätzungen probiert, komme jedoch am Ende auf [mm]a \le b[/mm]... Naja.
Ich danke euch allen im Voraus.
Markus.
P.S.: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:31 Do 04.05.2006 | Autor: | leduart |
Hallo Markus
> Sei [mm]V[/mm] ein Vektorraum über [mm]\IR[/mm] und [mm]a, b \in V[/mm]. Wir
> definieren die Strecke zwischen [mm]a[/mm] und [mm]b[/mm] als die Menge
> [mm]\bar{ab} := \left\{a + t(b-a) : t \in \left\[0,1\right\]\right\} \subset V[/mm].
> Mit dem Rand der Strecke bezeichnen wir die Menge
> [mm]\partial\left(\bar{ab}\right) := \left\{a,b\right\}[/mm].
> Seien nun [mm]c,d \in V[/mm] sodass [mm]\bar{ab} = \bar{cd}[/mm]. Zeigen Sie,
> dass die Ränder [mm]\partial\left(\bar{ab}\right) = \partial\left(\bar{cd}\right)[/mm]
> übereinstimmen müssen.
> Hallo liebe Leute. So weit so gut, die Aufgabenstellung
> habe ich verstanden
>
> Der erste Ansatz war: Da die Strecken gleich sind, kann ich
> die Mengen auch gleich schreiben: [mm]\bar{cd} = \left \{ a + t(b-a) : t \in \left\[0,1\right\]\right\}[/mm].
Ist nach meiner Meinung richtig!
> Damit war ich dann schnell fertig, denn angenommen, [mm]a \ne c[/mm]
> ergibt sich nach Einsetzen [mm]a = d[/mm] und dann [mm]b = c[/mm]. Darf ich
> das so machen, oder kann ich nicht annehmen, dass die
> Strecken nach Definition gleich geschrieben werden können?
Was setzt du wo ein? Das hab ich nicht verstanden. wenn du das richtig gemacht hast gibts keine Einwände!
> Mein zweiter Ansatz sieht so aus: Da die Strecken gleich
> sind, kann ich ein [mm]\lambda \in \left\[ 0,1\right\][/mm] finden,
> sodass (wegen [mm]a \in \bar{bc}[/mm]) gilt: [mm]a = c + \lambda (d-c)[/mm]
> gilt.
> Diese Schreibweise für a in [mm]\bar{ab}[/mm] ergibt dann: Ich kann
> ein [mm]\mu[/mm] in dem Intervall finden, sodass [mm]a = c + \lambda\left(d-c\right) + \mu\left(b-a\right)[/mm].
Das ist sicher zuviel Umweg: und hier muss ja [mm] \mu=0 [/mm] sein!
Gruss leduart
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:29 Do 04.05.2006 | Autor: | Leto |
Hallo leduart.
> Hallo Markus
(...)
> >
> > Der erste Ansatz war: Da die Strecken gleich sind, kann ich
> > die Mengen auch gleich schreiben: [mm]\bar{cd} = \left \{ a + t(b-a) : t \in \left\[0,1\right\]\right\}[/mm].
>
> Ist nach meiner Meinung richtig!
> > Damit war ich dann schnell fertig, denn angenommen, [mm]a \ne c[/mm]
> > ergibt sich nach Einsetzen [mm]a = d[/mm] und dann [mm]b = c[/mm]. Darf ich
> > das so machen, oder kann ich nicht annehmen, dass die
> > Strecken nach Definition gleich geschrieben werden können?
> Was setzt du wo ein? Das hab ich nicht verstanden. wenn du
> das richtig gemacht hast gibts keine Einwände!
Hier setze ich [mm]a = d[/mm] in der Definition von [mm]\overline{ab}[/mm] ein und nutze die Tatsache, dass [mm]b \in \overline{ab}[/mm] ist.
> (...)
> Gruss leduart
Danke, leduart, für deine Hilfe. Montag werde ich das noch mit anderen Studis besprechen, kann ich dann hier posten, ob das so geht? Wenn nicht, wo dann - falls das von Interesse ist, natürlich.
Liebe Grüße, Markus.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:08 Do 04.05.2006 | Autor: | leduart |
Hallo
was du wo einsetzt hab ich immer noch nicht kapiert! Wenn du einfach a=d einsetzt nimmst du doch die Behauptung vorweg! also folgerst du wenn a=d dann b=c das ist aber nicht was verlangt ist! Also kein Beweis, oder ich hab was übersehen:
Gruss leduart
|
|
|
|
|
Bin ich jetzt bescheuert oder leide ich an Wahnvorstellungen?
Wenn in der Mathematik zwei Objekte [mm]X,Y[/mm] - mit Absicht wähle ich diesen schwammigen Begriff, denn was das genau sein soll, ist eigentlich völlig egal - wenn also zwei Objekte gleich sind: [mm]X=Y[/mm], und ich mit diesen dasselbe mache (was durch [mm]\varphi[/mm] ausgedrückt werden soll), dann besteht doch auch hinterher Gleichheit: [mm]\varphi(X) = \varphi(Y)[/mm]. Wenn das einmal nicht mehr gilt, können wir die Mathematik sein lassen.
Und bei dieser Aufgabe ist
[mm]X = \overline{ab} \, , \ \ Y = \overline{cd} \, ; \ \ \ \varphi = \partial[/mm]
Der einzige Sinn, den ich in dieser Aufgabe sehen könnte, wäre, zu zeigen, daß die Punktmenge "Strecke" ihre "Randpunkte" eindeutig bestimmt. Anders gesagt: Der Begriff "Randpunkt" ist so, wie oben festgelegt, wohldefiniert. Wenn das gemeint ist, dann wäre allerdings die Aufgabenformulierung hanebüchen ...
In diesem Fall müßte die Aufgabe wohl korrekt so lauten:
Zeigen Sie: [mm]\overline{ab} = \overline{cd} \ \ \Rightarrow \ \ \left\{ a , b \right\} = \left\{ c , d \right\}[/mm]
Und erst wenn das nachgewiesen wäre, könnte man dann [mm]\partial[/mm] definieren.
Auf was die Leute so alles kommen ...
|
|
|
|