www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Hüllkurve, verständnis Frage
Hüllkurve, verständnis Frage < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hüllkurve, verständnis Frage: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:00 Fr 28.05.2010
Autor: Parkan

Aufgabe
1. Hier ein Ausschnitt aus dem Forum hier, es beschreibt wie man Hüllkurven berechnet.
...
- Die Funktion nach t ableiten:
- Nullstellen suchen:
- In die Funktionsgleichung einsetzen:
...

2.Wie groß ist die Fläche im Koordinatensystem, die kein Punkt  der Kurvenschar enthält

zu 1. Warum leitet man nach dem Parameter ab? Könnte das jemand verständlich und ausfürlich erklären? Ich habe mir die Definitionen durchgelesen aber verstehe es trotzdem nicht.  


zu 2. Wenn ich die Hüllkurve berechnet habe, was muss ich dann tun  um die Frage zu beantworten?

Vielen Dank

        
Bezug
Hüllkurve, verständnis Frage: Antwort
Status: (Antwort) fertig Status 
Datum: 13:57 Fr 28.05.2010
Autor: chrisno


>  - Die Funktion nach t ableiten:

Ein beliebiges x ist fest. Nun wird nachgeschaut, wie sich f(x,t) ändert, wenn man t ändert.

>  - Nullstellen suchen:

Extremwertsuche: Weiterhin wird ein Wert von x betrachtet. Welchen Wert von t muss man wählen, um einen möglichst großen oder kleinen Wert für f(x,t) zu erhalten. Nehmen wir mal an, die Einhüllende liegt oberhalb. Dann ist gehört der Punkt zur Einhüllenden, der bei einem festen x am weitesten oben liegt.
Nebenbemerkung: Also muss man eigentlich die komplette Extremwertsuche durchführen.

> - In die Funktionsgleichung einsetzen:

Nun ist für jedes x das entsprechende t bestimmt. Nun will man das t loswerden, um eine Funktion E(x) zu erhalten, die die Einhüllende beschreibt. Für jedes x kennt man aus dem vorigen Schritt das richtige t. Also muss man dieses t in f(x,t) einsetzen um E(x) zu erhalten.

>  
> 2.Wie groß ist die Fläche im Koordinatensystem, die keinen
> Punkt  der Kurvenschar enthält

>
> zu 2. Wenn ich die Hüllkurve berechnet habe, was muss ich
> dann tun  um die Frage zu beantworten

Nehmen wir an, die einhüllende ist ein Kreis. Drumherum liegen die Graphen von f(x,t). Dann sollst Du die Fläche des Kreises betimmen. Bei anderen Einhüllenden musst Du integrieren.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]