www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Homomorphismus
Homomorphismus < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Homomorphismus: Gruppenhomom.- Trivialität?
Status: (Frage) beantwortet Status 
Datum: 18:11 Di 25.03.2008
Autor: Riesenradfahrrad

Ich lerne gerade ein Begriffe der Linearen Algebra und mir ist dabei der Homomorphismus untergekommen. Mir ist im Prinzip klar, das dieser ein "Werkzeug" zu Vergleich von Srukturen zwischen z.B. zwei Gruppen sein soll.
Jedoch komme ich beim lesen der Definition ein wenig ins Schmunzeln (vielleicht aus Blödheit..), denn:

" Seien [mm](G_1,\circ_1)[/mm] und [mm](G_2,\circ_2)[/mm] Gruppen und [mm]f:G_1\rightarrow G_2[/mm] eine Abbildung. [mm]f[/mm] heißt Homomorphismus, falls gilt
[mm]f(a\circ_1 b)=f(a)\circ_2 f(b)[/mm]

[mm](G_1,\circ_1)[/mm] und [mm](G_2,\circ_2)[/mm] heißen homomorph, wenn es solch einen Homomorphismus gibt.

Aber!! Man kann doch immer eine Abbildung [mm]f[/mm] nehmen, die alle Elemente von [mm]G_1[/mm] auf das neutrale Element von [mm]G_2[/mm] abbildet. Und das ist trivial.


Was ist dann das "Tolle" an der Eigenschaft Homomorphie?


Vielen Dank im Voraus,
Lorenz

        
Bezug
Homomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 18:30 Di 25.03.2008
Autor: pelzig


> Aber!! Man kann doch immer eine Abbildung [mm]f[/mm] nehmen, die
> alle Elemente von [mm]G_1[/mm] auf das neutrale Element von [mm]G_2[/mm]
> abbildet. Und das ist trivial.

Richtig, das ist eben der "triviale Homomorphismus".

> Was ist dann das "Tolle" an der Eigenschaft Homomorphie?

Nix. Wahrscheinlich wurde der Begriff in deinem Buch (oder welche Quelle auch immer du verwendest) nur der Vollständigkeit halber eingeführt (es gibt auch kein Symbol dafür), da diese Begriffsbildung ja analog zu [mm] "Isomorphismus"$\to$"Isomorphie" [/mm] ist, und Isomorphie ist nun wirklich eine sehr bedeutende Eigenschaft.

Bezug
                
Bezug
Homomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:49 Di 25.03.2008
Autor: Riesenradfahrrad

Hallo pelzig,

herzlichen Dank für die schnelle Antwort!
Aber trotzdem schon komisch, dass man für so einen uninteressanten Verhalt einen Begriff prägt...

Greez,
Lorenz

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]