www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lerngruppe LinAlg" - Höhere Ma1 Hausübung
Höhere Ma1 Hausübung < Lerngruppe LinAlg < Universität < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lerngruppe LinAlg"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Höhere Ma1 Hausübung: Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 07:53 Di 05.12.2017
Autor: DerMatheGruenschnabel

Aufgabe
Es sei f ein Polynom vom Grad 2 (d.h. f(x) = ax² + bx + c, a 6 ungleich 0) mit Definitionsbereich R. Geben Sie Koeffizienten a,b,c an, so dass die folgenden Bedingungen erfüllt sind.
• f hat in ihrer globalen Maximalstelle den Funktionswert 10.
• f(0) = 1.
• f'(1) = g'(1) mit g differenzierbar und es gilt: −(x−1)² −g(x) = e hoch g mal x.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Guten Tag, finde heute nicht den richtigen Denkansatz um die Aufgabe zu lösen.....Weiß Jemand um Rat?Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Höhere Ma1 Hausübung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:35 Di 05.12.2017
Autor: fred97


> Es sei f ein Polynom vom Grad 2 (d.h. f(x) = ax² + bx + c,
> a 6 ungleich 0) mit Definitionsbereich R. Geben Sie
> Koeffizienten a,b,c an, so dass die folgenden Bedingungen
> erfüllt sind.
> • f hat in ihrer globalen Maximalstelle den Funktionswert
> 10.
> • f(0) = 1.
> • f'(1) = g'(1) mit g differenzierbar und es gilt:
> −(x−1)² −g(x) = e hoch g mal x.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Guten Tag, finde heute nicht den richtigen Denkansatz um
> die Aufgabe zu lösen.....Weiß Jemand um Rat?Ich habe
> diese Frage in keinem Forum auf anderen Internetseiten
> gestellt.


Aus f(0)=1 folgt schon mal c=1.

Es ist f'(x)=2ax+b. Berechne nun die Nullstelle [mm] x_0 [/mm] von f'. Dann haben wir [mm] f(x_0)=10. [/mm] Das liefert eine Gleichung für a und b.

Die Bedingung −(x−1)² −g(x) = e hoch g mal x ist nicht klar !

Bedeutet das [mm] $-(x-1)^2-g(x)=e^{g(x)}$ [/mm] ? oder  [mm] $-(x-1)^2-g(x)=e^{g(x)}x$ [/mm]  oder.....

Kläre das, dann sehen wir weiter.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lerngruppe LinAlg"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]