www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Häufungspunkte
Häufungspunkte < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Häufungspunkte: Hilfe bei der Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:03 Do 11.02.2016
Autor: rsprsp

Aufgabe
Bestimmen Sie alle Häufungspunkte der Folgen
[mm] (a_n)_{n\in\IN)} [/mm] mit

[mm] (a_n) [/mm] = [mm] cos(\bruch{\pi}{2}n) [/mm]

[mm] (a_n) [/mm] = [mm] sin(\bruch{\pi}{3}n) [/mm] + [mm] \bruch{(-1)^n n^2+2}{2n^2+1} [/mm]

[mm] (a_n) [/mm] = [mm] cos(\bruch{\pi}{2}n) [/mm]

[mm] a_n [/mm] = { [mm] cos(\bruch{\pi}{2}),cos(\pi),cos(\bruch{3\pi}{2}),cos(2\pi)... [/mm] }
[mm] a_n [/mm] = {0,-1,0,1,0,-1,0,1,...}

d.h die Häufungspunkte sind
a_4k = 0
[mm] a_{4k+1} [/mm] = -1
[mm] a_{4k+2} [/mm] = 0
[mm] a_{4k+3} [/mm] = 1


----


[mm] (a_n) [/mm] = [mm] sin(\bruch{\pi}{3}n) [/mm] + [mm] \bruch{(-1)^n n^2+2}{2n^2+1} [/mm]
[mm] (a_n) [/mm] = [mm] (b_n) [/mm] + [mm] (c_n) [/mm]

[mm] (b_n) [/mm] = [mm] sin(\bruch{\pi}{3}n) [/mm]
[mm] (b_n) [/mm] = { [mm] sin(\bruch{\pi}{3}), sin(\bruch{2\pi}{3}), sin(\pi),... [/mm] }

d.h.
[mm] sin(\bruch{\pi}{3}) [/mm] = [mm] sin(\bruch{2\pi}{3}) [/mm] = [mm] sin(\bruch{7\pi}{3}) [/mm] = [mm] sin(\bruch{8\pi}{3}) [/mm] = ...
[mm] sin(\pi) [/mm] = [mm] sin(2\pi) [/mm] = [mm] sin(3\pi) [/mm] = ...
[mm] sin(\bruch{4\pi}{3}) [/mm] = [mm] sin(\bruch{5\pi}{3}) [/mm] = [mm] sin(\bruch{10\pi}{3}) [/mm] = [mm] sin(\bruch{11\pi}{3}) [/mm] = ...
also:
b_5k = [mm] b_{5k+1} [/mm]
[mm] b_{5k+2} [/mm]
[mm] b_{5k+3} [/mm] = [mm] b_{5k+4} [/mm]

Kann man das irgendwie anders schreiben???

[mm] c_n [/mm] = [mm] \bruch{(-1)^n n^2+2}{2n^2+1} [/mm]
[mm] c_n [/mm] ist hier eine Nullfolge damit hat es einen Häufungspunkt bei 0, oder?
[mm] \limes_{n\rightarrow\infty} \bruch{(-1)^n n^2+2}{2n^2+1} [/mm] = 0 ?

        
Bezug
Häufungspunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 14:36 Do 11.02.2016
Autor: statler

Hallo!

>  [mm]c_n[/mm] ist hier eine
> Nullfolge damit hat es einen Häufungspunkt bei 0, oder?

Hier nicht, und woanders auch nicht.
Gruß
Dieter

Bezug
                
Bezug
Häufungspunkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:40 Do 11.02.2016
Autor: rsprsp

Na gut, sie läuft gegen im negativen gegen -0,5 bzw im positiven 0,5 also für
[mm] c_{2k} [/mm] = 0,5 und
[mm] c_{2k+1} [/mm] = -0,5

sind es jetzt die Häufungspunkte?

Bezug
                        
Bezug
Häufungspunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 14:49 Do 11.02.2016
Autor: fred97


> Na gut, sie läuft gegen im negativen gegen -0,5 bzw im
> positiven 0,5 also für
>  [mm]c_{2k}[/mm] = 0,5 und
>  [mm]c_{2k+1}[/mm] = -0,5
>  
> sind es jetzt die Häufungspunkte?

So kannst Du das nicht formulieren !

Wir haben:

$ [mm] c_n [/mm] = [mm] \bruch{(-1)^n n^2+2}{2n^2+1} [/mm] $

Dann ist

    [mm] c_{2k}=\bruch{4k^2+2}{8k^2+1}. [/mm]

Somit hat die Teilfolge  [mm] (c_{2k}) [/mm] den Grenzwert [mm] \bruch{1}{2} [/mm]

Weiter ist

    [mm] $c_{2k-1}=-\bruch{4k^2-4k+3}{8k^2-8k+3}.$ [/mm]

Somit hat die Teilfolge  [mm] (c_{2k-1}) [/mm] den Grenzwert [mm] $-\bruch{1}{2}$. [/mm]

[mm] (c_n) [/mm] hat also genau die Häufungspunkte [mm] \bruch{1}{2} [/mm] und  [mm] $-\bruch{1}{2}$. [/mm]

FRED



Bezug
                                
Bezug
Häufungspunkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:11 Do 11.02.2016
Autor: rsprsp

Ja wollte ich auch, war nur so kurz geschrieben.

Also ich habe jetzt die Häufungspunkte von [mm] b_n [/mm]
[mm] b_{5k} [/mm] = [mm] sin(\bruch{\pi}{3}) [/mm] = [mm] b_{5k+1} [/mm]
[mm] b_{5k+2} [/mm] = 0
[mm] b_{5k+3} [/mm] = [mm] sin(\bruch{4\pi}{3}) [/mm] = [mm] b_{5k+4} [/mm]

und

[mm] c_{2k} [/mm] = 0,5
[mm] c_{2k+1} [/mm] = -0,5

d.h. die Häufungspunkte sind
[mm] sin(\bruch{\pi}{3})+0,5, sin(\bruch{\pi}{3})-0,5, [/mm] 0,5 , -0,5 , [mm] sin(\bruch{4\pi}{3})+0,5, sin(\bruch{4\pi}{3})-0,5 [/mm]

Bezug
                                        
Bezug
Häufungspunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 16:44 Do 11.02.2016
Autor: abakus

Nun solltest du nur noch konkret angeben, was [mm] $sin\frac{\pi}{3}$ [/mm] konkret ist.

Bezug
                                                
Bezug
Häufungspunkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:43 Do 11.02.2016
Autor: rsprsp

Das ist rund 0.86602540378 aber da wir kein Taschenrechner benutzen dürfen sollte ich das gar nicht ausrechnen können.

Bezug
                                                        
Bezug
Häufungspunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 20:54 Do 11.02.2016
Autor: abakus


> Das ist rund 0.86602540378

Das sind GENAU [mm] $\frac{\sqrt{3}}{2}$. [/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]