www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Häufungspkt. L-Nullmenge
Häufungspkt. L-Nullmenge < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Häufungspkt. L-Nullmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:56 Mi 02.01.2013
Autor: Richie1401

Aufgabe
Zeigen Sie, dass jede beschränkt Menge des [mm] \IR^n [/mm] mit endlich vielen Häufungspunkten eine Lebesguesche Nullmenge ist.


Hallo,

ich habe mir zu obiger Aufgabe mir Gedanken gemacht und folgendes fabriziert:


Seien [mm] $h_1,\ h_2,\ h_3,\ldots$ [/mm] Häufungspunkte. Sei weiter [mm] H_i=\{h_i\} [/mm] für [mm] i=1,2,3,\ldots [/mm]

Es ist [mm] H_i [/mm] das Intervall [mm] [h_i,h_i]. [/mm] Somit ist das Lebesgue-Maß [mm] \mu(H_i)=h_i-h_i=0. [/mm] Also ist [mm] H_i [/mm] eine L-Nullmenge.

Nun folgt aus der [mm] $\sigma$-Subadditivität: [/mm]
[mm] 0\le\mu\left(\bigcup_{i=1}^{\infty}H_i\right)\le\sum_{i=1}^{\infty}\mu(H_i)=0 [/mm]

Also ist [mm] \bigcup\limits_{i=1}^{\infty}H_i [/mm] eine L-Nullmenge. [mm] \Rightarrow [/mm] Behauptung.


Es wäre super, wenn jemand von euch dazu ein Statement abgeben kann. Es würde mich freuen.

Liebe Grüße!

        
Bezug
Häufungspkt. L-Nullmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 19:29 Mi 02.01.2013
Autor: fred97


> Zeigen Sie, dass jede beschränkt Menge des [mm]\IR^n[/mm] mit
> endlich vielen Häufungspunkten eine Lebesguesche Nullmenge
> ist.
>  
> Hallo,
>  
> ich habe mir zu obiger Aufgabe mir Gedanken gemacht und
> folgendes fabriziert:
>  
>
> Seien [mm]h_1,\ h_2,\ h_3,\ldots[/mm] Häufungspunkte.


Von was ?

Von der beschränkten Menge B mit endl. vielen Häufungspunkten ???

> Sei weiter
> [mm]H_i=\{h_i\}[/mm] für [mm]i=1,2,3,\ldots[/mm]
>  
> Es ist [mm]H_i[/mm] das Intervall [mm][h_i,h_i].[/mm] Somit ist das
> Lebesgue-Maß [mm]\mu(H_i)=h_i-h_i=0.[/mm] Also ist [mm]H_i[/mm] eine
> L-Nullmenge.


Das eine einelementige Teilmenge des [mm] \IR^n [/mm] eine Nullmenge ist, ist kein großes Geheimnis....

>  
> Nun folgt aus der [mm]\sigma[/mm]-Subadditivität:
>  
> [mm]0\le\mu\left(\bigcup_{i=1}^{\infty}H_i\right)\le\sum_{i=1}^{\infty}\mu(H_i)=0[/mm]
>  
> Also ist [mm]\bigcup\limits_{i=1}^{\infty}H_i[/mm] eine L-Nullmenge.
> [mm]\Rightarrow[/mm] Behauptung.



Hä ?   Wenn Du meinst, dass die Ausgangsmenge = [mm]\bigcup\limits_{i=1}^{\infty}H_i[/mm] ist, so  stimmt das nicht.


Sei B eine beschränkte Teilmenge des [mm] \IR^n [/mm] mit nur endlich vielen Häufungspunkten,

Zeigen sollst Du: B ist eine L-Nullmenge.

FRED

>  
>
> Es wäre super, wenn jemand von euch dazu ein Statement
> abgeben kann. Es würde mich freuen.
>  
> Liebe Grüße!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]