Grenzwertkriterium < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:10 Mi 02.12.2009 | Autor: | kolja2 |
Aufgabe | Vergleichen Sie mittels Grenzwertkriterium das Konvergenzverhalten der Reihe
[mm] \summe_{n\ge1} \bruch{n^{2}-n+3}{n^{5}-n^{4}+n^{3}-n^{2}+n+1} [/mm] mit den Reihen [mm] \summe_{n\ge1} \bruch{1}{n}, \summe_{n\ge1} \bruch{1}{n^{2}} [/mm] und [mm] \summe_{n\ge1} \bruch{1}{n^{3}} [/mm] |
Hi Leute,
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich habe eine Frage zu dieser Aufgabe. Also, wenn ich den Grenzwert berechne, dividiere ich z.B. die erste Summe [mm] \summe_{n\ge1} \bruch{1}{n} [/mm] mit [mm] \summe_{n\ge1} \bruch{n^{2}-n+3}{n^{5}-n^{4}+n^{3}-n^{2}+n+1}, [/mm] dann bekomme ich [mm] \summe_{n\ge1} \bruch{n^{2}-n+3}{n^{5}-n^{4}+n^{3}-n^{2}+n+1} [/mm] : [mm] \summe_{n\ge1} \bruch{1}{n} [/mm] und schließlich mit der Doppelbruchregel
[mm] \summe_{n\ge1} \bruch{n^{3}-n+3n}{n^{5}-n^{4}+n^{3}-n^{2}+n+1} [/mm]
Was mache ich jetzt?
Kürze ich nun den größten gemeinsamen Nenner also in diesem Fall [mm] n^{3} [/mm] und erhalte als Grenzwert 1 oder muss ich [mm] n^{5} [/mm] kürzen.
Ich bedanke mich schon mal für die Hilfe!
|
|
|
|
Hallo Kolja,
nee, das geht so nicht...
> Vergleichen Sie mittels Grenzwertkriterium das
> Konvergenzverhalten der Reihe
> [mm]\summe_{n\ge1} \bruch{n^{2}-n+3}{n^{5}-n^{4}+n^{3}-n^{2}+n+1}[/mm]
> mit den Reihen [mm]\summe_{n\ge1} \bruch{1}{n}, \summe_{n\ge1} \bruch{1}{n^{2}}[/mm]
> und [mm]\summe_{n\ge1} \bruch{1}{n^{3}}[/mm]
> Hi Leute,
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
> Ich habe eine Frage zu dieser Aufgabe. Also, wenn ich den
> Grenzwert berechne, dividiere ich z.B. die erste Summe
> [mm]\summe_{n\ge1} \bruch{1}{n}[/mm] mit [mm]\summe_{n\ge1} \bruch{n^{2}-n+3}{n^{5}-n^{4}+n^{3}-n^{2}+n+1},[/mm]
> dann bekomme ich [mm]\summe_{n\ge1} \bruch{n^{2}-n+3}{n^{5}-n^{4}+n^{3}-n^{2}+n+1}[/mm]
> : [mm]\summe_{n\ge1} \bruch{1}{n}[/mm] und schließlich mit der
> Doppelbruchregel
> [mm]\summe_{n\ge1} \bruch{n^{3}-n+3n}{n^{5}-n^{4}+n^{3}-n^{2}+n+1}[/mm]
Hier gilt die Doppelbruchregel aber nicht. Du nimmst hier gerade die Summenzeichen als Dekorationsobjekt statt als verkürzte Rechenanweisung. Was ich damit meine, siehst Du, wenn du mal n=2 (oder besser n=3 ) setzt und die Summen ausschreibst.
Was Du brauchst, ist eine Abschätzung der einzelnen Glieder - also ohne das Summenzeichen - und damit letztlich eine Anwendung des Minoranten- oder Majorantenkriteriums. Es kann allerdings sein (ich habe es noch gar nicht gerechnet), dass es erst ab einem gewissen [mm] n\ge n_0 [/mm] gilt.
> Was mache ich jetzt?
Gute Frage. Aufgeben? Nee, probier mal das oben Gesagte.
> Kürze ich nun den größten gemeinsamen Nenner also in
> diesem Fall [mm]n^{3}[/mm] und erhalte als Grenzwert 1 oder muss ich
> [mm]n^{5}[/mm] kürzen.
Neinneinneinnein... Du bist nicht auf gültigem Wege hierher gekommen, also brauchst und darfst Du an dieser Stelle gar nicht weiter (zu) rechnen.
> Ich bedanke mich schon mal für die Hilfe!
lg
reverend
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 06:57 Do 03.12.2009 | Autor: | fred97 |
Mein lieber Herr Gesangsverein, das Grenzwertkriterium hast Du aber gründlich in den falschen Hals bekommen.
Es lautet so: sind [mm] (a_n) [/mm] und [mm] (b_n) [/mm] Folgen mit [mm] a_n [/mm] > 0 und [mm] b_n> [/mm] 0 für fast alle n und strebt die Folge [mm] (\bruch{a_n}{b_n}) [/mm] gegen eine positiven Grenzwert, so haben die Reihen [mm] \summe_{n=1}^{\infty}a_n [/mm] und [mm] \summe_{n=1}^{\infty}b_n [/mm] dasselbe Konvergenzverhalten.
FRED
|
|
|
|