www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Grenzwertbestimmung
Grenzwertbestimmung < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:40 Mi 03.10.2012
Autor: kitedu

Aufgabe
Bestimmen Sie den mgl. Grenzwert:
[mm] \limes_{n\rightarrow\infty} (3*n^2(n+1))/(n*(n^2-1)*n!) [/mm]

Generell ist mir die Systematik bei der Grenzwertbestimmung recht unklar. Man muss doch den Term soweit vereinfachen sodass im Idealfall eine Zahl stehen bleibt. Ich habe das mit dieser Folge gemacht und angekommen bin ich bei

[mm] 3*n^3+3*n [/mm] / [mm] n^3-n [/mm] . Jetzt komme ich allerdings nicht weiter.


Es wäre nett wenn mir jemand eine ausführliche Antwort zum weiteren Vorgehen geben könnte.

LG kitedu


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwertbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:47 Mi 03.10.2012
Autor: fred97


> Bestimmen Sie den mgl. Grenzwert:
>  [mm]\limes_{n\rightarrow\infty} (3*n^2(n+1))/(n*(n^2-1)*n!)[/mm]
>  
> Generell ist mir die Systematik bei der Grenzwertbestimmung
> recht unklar. Man muss doch den Term soweit vereinfachen
> sodass im Idealfall eine Zahl stehen bleibt. Ich habe das
> mit dieser Folge gemacht und angekommen bin ich bei
>
> [mm]3*n^3+3*n[/mm] / [mm]n^3-n[/mm] . Jetzt komme ich allerdings nicht
> weiter.

Du meinst sicher  [mm](3*n^3+3*n)[/mm] / [mm](n^3-n)[/mm]

Aber Du hast den Faktor [mm] \bruch{1}{n!} [/mm]  unterschlagen


Gegen was strebt [mm](3*n^3+3*n)[/mm] / [mm](n^3-n)[/mm] ?

Gegen was strebt [mm] \bruch{1}{n!} [/mm] ?

FRED

>  
>
> Es wäre nett wenn mir jemand eine ausführliche Antwort
> zum weiteren Vorgehen geben könnte.
>  
> LG kitedu
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Grenzwertbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:59 Mi 03.10.2012
Autor: kitedu

Woher kommt denn der Faktor 1/n! ? Die Fakultäten haben sich bei mir rausgekürzt.

Also 1/n! geht gegen 0 .  Und bei dem anderen Term bin ich mir nicht sicher... entweder +unendlich oder 3.

kitedu

Bezug
                        
Bezug
Grenzwertbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:07 Mi 03.10.2012
Autor: fred97


> Woher kommt denn der Faktor 1/n! ? Die Fakultäten haben
> sich bei mir rausgekürzt.

Wie hast Du das denn gemacht ??

>  
> Also 1/n! geht gegen 0

Ja

> .  Und bei dem anderen Term bin ich
> mir nicht sicher... entweder +unendlich oder 3.

gegen 3

FRED

>
> kitedu  


Bezug
                                
Bezug
Grenzwertbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:31 Mi 03.10.2012
Autor: kitedu

[mm] \limes_{n\rightarrow\infty}(3n^2(n+1)!)/(n(n^2-1)n!) [/mm] =
[mm] (3n^2*n!*(n+1))/n(n^2-1)*n!)= [/mm] (hier habe ich dann gekürzt und die klammern aufgelöst)
[mm] (3n^3+3n^2)/(n^3-n) [/mm]

Wo liegt denn mein Fehler?

Warum ist der Grenzwert 3? Könntest du mir sagen wie genau du darauf kommst?


Bezug
                                        
Bezug
Grenzwertbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:38 Mi 03.10.2012
Autor: fred97


> [mm]\limes_{n\rightarrow\infty}(3n^2(n+1)!)/(n(n^2-1)n!)[/mm] =
>  [mm](3n^2*n!*(n+1))/n(n^2-1)*n!)=[/mm] (hier habe ich dann gekürzt
> und die klammern aufgelöst)
>  [mm](3n^3+3n^2)/(n^3-n)[/mm]
>  
> Wo liegt denn mein Fehler?

In Deinem ersten Post waren die Fak. im Zähler nicht zu sehen:

     $ [mm] \limes_{n\rightarrow\infty} (3\cdot{}n^2(n+1))/(n\cdot{}(n^2-1)\cdot{}n!) [/mm] $

!!!!!!!!!!!

                      

>  
> Warum ist der Grenzwert 3? Könntest du mir sagen wie genau
> du darauf kommst?

In  [mm](3n^3+3n^2)/(n^3-n)[/mm] klammere in Zähler und Nenner [mm] n^3 [/mm] aus

FRED

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]