Grenzwert rekursiver Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Die reelle Folge [mm] (a_n) [/mm] sei wie folgt definiert: Es sind [mm] a_1 [/mm] = 3 und [mm] a_{n + 1} [/mm] = [mm] \bruch{a_n}{2} [/mm] + [mm] \bruch{2}{a_n} [/mm] für alle n [mm] \ge [/mm] 1.
Beweisen Sie, dass [mm] (a_n) [/mm] konvergent ist, und berechnen Sie den Grenzwert der Folge. |
Hallo,
hatte zuerst gedacht, das Problem ließe sich vielleicht durch Auflösen der Rekursion lösen, dann aber gemerkt, dass diese hier ja gar nicht linear ist.
Der Computer hat mir ja schon gesagt, dass der Grenzwert 2 ist und zwar unabhängig vom gewählten Wert für [mm] a_1. [/mm] Leider komme ich immer noch auf keinen grünen Zweig bei meinen Überlegungen, warum das so ist und wäre für einen kleinen Tipp sehr dankbar!
Gruß,
Martin
|
|
|
|
Hiho,
den Grenzwert einer rekursiven Folge lässt sich oft wie folgt bestimmen.
1.) Zeige, dass der Grenzwert existiert, d.h. finde eine Kriterium, warum die Folge konvergent sein muss. Hier bspw: Die Folge ist monoton fallend und beschränkt.
2.) Den konkreten Grenzwert $a$ kannst du dann mit Hilfe der Rekursionsgleichung bestimmen, in dem du auf beiden Seiten den Grenzwert bestimmst, denn es gilt wegen 1.) $a = [mm] \lim_{n\to\infty}a_{n+1} [/mm] = [mm] \lim_{n\to\infty}a_n$
[/mm]
Gruß,
Gono
|
|
|
|
|
Hallo!
>
> 1.) Zeige, dass der Grenzwert existiert, d.h. finde eine
> Kriterium, warum die Folge konvergent sein muss. Hier bspw:
> Die Folge ist monoton fallend und beschränkt.
Sorry aber erst nach deiner Antwort merke ich, dass ich mich vertipp habe. Habe die Aufgabenstellung korrigiert; es muss + [mm] \bruch{2}{a_n} [/mm] (NICHT + [mm] \bruch{1}{a_n}) [/mm] lauten. Und jetzt wird's knifflig: Für Werte > 2 ist [mm] \bruch{a_n}{2} [/mm] > 1 und [mm] \bruch{2}{a_n} [/mm] < 1. Für Werte < 2 ist [mm] \bruch{a_n}{2} [/mm] < 1 und [mm] \bruch{2}{a_n} [/mm] > 1. Für [mm] a_n [/mm] = 2 ist alles im Gleichgewicht. Aber was sagt mir das?
Gruß und Danke,
Martin
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:34 Fr 30.10.2020 | Autor: | statler |
Hi!
> Sorry aber erst nach deiner Antwort merke ich, dass ich
> mich vertipp habe. Habe die Aufgabenstellung korrigiert; es
> muss + [mm]\bruch{2}{a_n}[/mm] (NICHT + [mm]\bruch{1}{a_n})[/mm] lauten. Und
> jetzt wird's knifflig: Für Werte > 2 ist [mm]\bruch{a_n}{2}[/mm] >
> 1 und [mm]\bruch{2}{a_n}[/mm] < 1. Für Werte < 2 ist [mm]\bruch{a_n}{2}[/mm]
> < 1 und [mm]\bruch{2}{a_n}[/mm] > 1. Für [mm]a_n[/mm] = 2 ist alles im
> Gleichgewicht. Aber was sagt mir das?
Du kannst z. B. auf der rechten Seite der Rekursionsgleichung 1/2 ausklammern und findest dann den Algorithmus für das Babylonische Wurzelziehen, auch Heron-Verfahren genannt.
Gruß Dieter
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:14 Fr 30.10.2020 | Autor: | sancho1980 |
Super Stichwort!
|
|
|
|
|
Hiho,
> Sorry aber erst nach deiner Antwort merke ich, dass ich
> mich vertipp habe. Habe die Aufgabenstellung korrigiert;
das ändert nichts an meiner Antwort. Zeige:
> Die Folge ist monoton fallend und beschränkt.
Was folgt daraus?
Gruß,
Gono
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:25 Fr 30.10.2020 | Autor: | sancho1980 |
dass sie konvergiert. Aber dass zu zeigen fällt mir ziemlich schwer. Irgendwie fehlt mir die Systematik dazu. Aber mit der Heronschen Folge hab ichs geschafft..
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 06:55 Sa 31.10.2020 | Autor: | Gonozal_IX |
Hiho,
> dass sie konvergiert. Aber dass zu zeigen fällt mir ziemlich schwer.
Was fällt dir daran schwer?
Ich sagte ja: Zeige, sie ist monoton.
Da [mm] $a_1 [/mm] = 3$ und [mm] $a_2 \le a_1$ [/mm] ist sie wohl monoton fallend.
Man muss also zeigen: [mm] $a_{n+1} \le a_n$
[/mm]
Einsetzen und Umstellen ergibt nun [mm] $a_{n+1} \le a_n \gdw [/mm] 2 [mm] \le a_n$
[/mm]
D.h. sie ist monoton fallend, wenn 2 eine untere Schranke ist, also zeigen wir das mal.
2 ist eine untere Schranke, wenn $2 [mm] \le a_n$ [/mm] für alle $n$ gilt.
Wieder: Einsetzen der Definition und Umstellen ergibt: $2 [mm] \le a_n \gdw (a_{n-1} [/mm] - [mm] 2)^2 \ge [/mm] 0$
Das gilt aber offensichtlich immer.
Daher ist [mm] a_n [/mm] monoton fallend und nach unten beschränkt => konvergent.
Gruß,
Gono
|
|
|
|
|
Was mir vor Allem noch schwer fällt, ist, ganz unbefangen und ohne technische Hilfsmittel auf den Grenzwert "zu kommen". Du schreibst in deiner ersten Antwort: "Den konkreten Grenzwert $ a $ kannst du dann mit Hilfe der Rekursionsgleichung bestimmen, in dem du auf beiden Seiten den Grenzwert bestimmst". Wie sieht das konkret aus?
Ich habe meine Lösung jetzt mehrmals überarbeitet, aber am Ende, wo es darum geht, dass es für jedes [mm] \epsilon [/mm] ein [mm] n_0 [/mm] so gibt, dass [mm] \limes_{n\rightarrow\infty} a_n [/mm] - 2 < [mm] \epsilon [/mm] für jedes n [mm] \ge n_0 [/mm] verlasse ich mich eben auf den "Verdacht", dass die Folge gegen 2 konvergiert, worauf man ja auch erstmal kommen muss:
1) Es ist [mm] a_n [/mm] - [mm] a_{n + 1} [/mm] = [mm] a_n [/mm] - [mm] \frac{a_n}{2} [/mm] - [mm] \frac{2}{a_n} [/mm] = ... = [mm] \frac{{a_n}^2 - 4}{2a_n} \ge [/mm] 0 für alle [mm] a^n \ge [/mm] 2.
2) Es ist [mm] a_{n + 1} [/mm] = 2 + [mm] \frac{{a_n}^2 + 4}{2a_n} [/mm] - 2 = ... = 2 + [mm] \frac{(a_n - 2)^2}{2a_n}, [/mm] also [mm] a_{n + 1} \ge [/mm] 2 für a > 0. (Bereits hier kommt ja der Verdacht mit der 2 schon ins Spiel).
Mit 1) und 2) folgt, das [mm] (a_n) [/mm] monoton fallend ist, und dass 2 eine untere Schranke ist. Also ist [mm] (a_n) [/mm] konvergent,
Jetzt behaupte ich: [mm] a_n [/mm] - 2 [mm] \le \frac{1}{2^n}.
[/mm]
Für n = 0 gilt: [mm] a_n [/mm] - 2 = 3 - 2 = 1 = [mm] \frac{1}{2^0} [/mm] = [mm] \frac{1}{2^n}. [/mm] Die Behauptung ist für n = 0 wahr.
Jetzt gelte [mm] a_n [/mm] - 2 [mm] \le \frac{1}{2^n} [/mm] für ein n, dann ist [mm] a_{n + 1} [/mm] - 2 = [mm] \frac{a_n}{2} [/mm] + [mm] \frac{2}{a_n} [/mm] - 2 = [mm] \frac{(a_n - 2)^2}{2a_n} \le \frac{1}{2}(a_n [/mm] - [mm] 2)^2 \le \frac{1}{2^{n + 1}} [/mm] wegen [mm] a_n \ge [/mm] 2 [mm] \ge [/mm] 1.
Es stimmt also, dass [mm] a_n [/mm] - 2 [mm] \le \frac{1}{2^n}.
[/mm]
Für jedes [mm] \epsilon [/mm] > 0 ist [mm] \frac{1}{2^n} [/mm] < [mm] \epsilon [/mm] für alle n > [mm] \frac{1}{\epsilon} [/mm] - 1, denn [mm] 2^n \ge [/mm] 1 + n.
Vielleicht kannst du mir ja helfen, dass Ganze so umzuschreiben, dass ich nicht mit zu beweisendem Verdacht bzw. zu beweisender Behauptung herangehen muss ...
Danke & Gruß,
Martin
|
|
|
|
|
Hiho,
> Was mir vor Allem noch schwer fällt, ist, ganz unbefangen
> und ohne technische Hilfsmittel auf den Grenzwert "zu
> kommen". Du schreibst in deiner ersten Antwort: "Den
> konkreten Grenzwert [mm]a[/mm]Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
kannst du dann mit Hilfe der
> Rekursionsgleichung bestimmen, in dem du auf beiden Seiten
> den Grenzwert bestimmst". Wie sieht das konkret aus?
Nehmen wir an, der Grenzwert existiert und nennen ihn $a$, dann gilt also $a = \lim_{n\to\infty} a_{n+1} = \lim_{n\to\infty} a_n$
Daraus folgt. dass der Grenzwert ebenfalls die Rekursionsgleichung erfüllen muss, denn es gilt:
$\lim_{n\to\infty} a_{n + 1} = \lim_{n\to\infty} \left(\bruch{a_n}{2} + \bruch{2}{a_n} \right)$
$\gdw a = \bruch{a}{2} + \bruch{2}{a} \right) \gdw a^2 = 4$
D.h. als Grenzwert kommt schon mal nur $a = \pm 2$ in Frage… da $a_n \ge 0$ ist dann $a=2$ als einziges plausibel.
Heißt: WENN die Folge konvergiert, DANN ist $a = 2$ auch der Grenzwert.
> Ich habe meine Lösung jetzt mehrmals überarbeitet, aber am Ende, wo es darum geht, dass es für jedes $ \epsilon $ ein $ n_0 $ so gibt, dass $ \limes_{n\rightarrow\infty} a_n $ - 2 < $ \epsilon $ für jedes n $ \ge n_0 $ verlasse ich mich eben auf den "Verdacht", dass die Folge gegen 2 konvergiert, worauf man ja auch erstmal kommen muss:
Du brauchst nach obigem nicht mehr beweisen, dass der Grenzwert 2 ist. Das folgt ja.
> 1) Es ist [mm]a_n[/mm] - [mm]a_{n + 1}[/mm] = [mm]a_n[/mm] - [mm]\frac{a_n}{2}[/mm] -
> [mm]\frac{2}{a_n}[/mm] = ... = [mm]\frac{{a_n}^2 - 4}{2a_n} \ge[/mm] 0 für
> alle [mm]a^n \ge[/mm] 2.
Bis auf dass es [mm] $a_n \ge [/mm] 2$ heißen muss.
> 2) Es ist [mm]a_{n + 1}[/mm] = 2 + [mm]\frac{{a_n}^2 + 4}{2a_n}[/mm] - 2 =
> ... = 2 + [mm]\frac{(a_n - 2)^2}{2a_n},[/mm] also [mm]a_{n + 1} \ge[/mm] 2
> für a > 0. (Bereits hier kommt ja der Verdacht mit der 2
> schon ins Spiel).
> Mit 1) und 2) folgt, das [mm](a_n)[/mm] monoton fallend ist, und
> dass 2 eine untere Schranke ist. Also ist [mm](a_n)[/mm]
> konvergent,
Und jetzt bist du fertig… die Existenz des Grenzwerts hast du bewiesen, der konkrete Wert folgt durch Lösen der Rekursionsgleichung.
Gruß,
Gono
|
|
|
|
|
Hallo,
> Nehmen wir an, der Grenzwert existiert und nennen ihn [mm]a[/mm],
> dann gilt also [mm]a = \lim_{n\to\infty} a_{n+1} = \lim_{n\to\infty} a_n[/mm]
>
> Daraus folgt. dass der Grenzwert ebenfalls die
> Rekursionsgleichung erfüllen muss, denn es gilt:
> [mm]\lim_{n\to\infty} a_{n + 1} = \lim_{n\to\infty} \left(\bruch{a_n}{2} + \bruch{2}{a_n} \right)[/mm]
>
> [mm]\gdw a = \bruch{a}{2} + \bruch{2}{a} \right)[/mm]
>
Hierzu mal eine Frage: Unterstellst du hiermit nicht gleich mal, dass a [mm] \ne [/mm] 0?
Danke und Gruß,
Martin
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:01 Mo 02.11.2020 | Autor: | fred97 |
> Hallo,
>
> > Nehmen wir an, der Grenzwert existiert und nennen ihn [mm]a[/mm],
> > dann gilt also [mm]a = \lim_{n\to\infty} a_{n+1} = \lim_{n\to\infty} a_n[/mm]
>
> >
> > Daraus folgt. dass der Grenzwert ebenfalls die
> > Rekursionsgleichung erfüllen muss, denn es gilt:
> > [mm]\lim_{n\to\infty} a_{n + 1} = \lim_{n\to\infty} \left(\bruch{a_n}{2} + \bruch{2}{a_n} \right)[/mm]
>
> >
> > [mm]\gdw a = \bruch{a}{2} + \bruch{2}{a} \right)[/mm]
> >
>
> Hierzu mal eine Frage: Unterstellst du hiermit nicht gleich
> mal, dass a [mm]\ne[/mm] 0?
Oben wurde doch festgestellt, dass 2 eine untere Schranke von [mm] $(a_n)$ [/mm] ist. Aus [mm] a_n \ge [/mm] 2 für alle n folgt doch dann, dass auch a [mm] \ge [/mm] 2 ist.
>
> Danke und Gruß,
> Martin
|
|
|
|