Grenzwert einer Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Berechne den Grenzwert
[mm] \limes_{n\rightarrow\infty} \summe_{k=1}^{n} |e^{\bruch{ikx}{n}} [/mm] - [mm] e^{\bruch{i(k-1)x}{n}}|
[/mm]
k € {1...n} |
Mahlzeit.
Ich besitze eine Lösung zu dieser Aufgabe, welche ich bis auf einen Punkt nachvollziehe und verstehe. Mein Problem ist ein Umformungsschritt den ich nach vielen Versuchen nicht hinbekomme. Der vorgeschlagene Lösungsweg sieht so aus:
[mm] |e^{\bruch{ikx}{n}} [/mm] - [mm] e^{\bruch{i(k-1)x}{n}}|^{2} [/mm] = [mm] |e^{\bruch{i(k-1)x}{n}}|^{2} *|e^{\bruch{ix}{n}}-1|^{2} [/mm] = [mm] (cos(x/n)-1)^{2}+(sin(x/n))^{2} [/mm] = 2-2cos(x/n)
... noch zweimal l'Hospital und Ergebnis ist x
Der Schritt von der e-Funktion zu den trigonometrischen ist mir ein totales Mysterium. Könnte mir bitte jemand erklären wie die Umformung an der Stelle gemacht wurde? Dann könnte ich mich endlich wieder auf andere Aufgaben voll konzentrieren.
Vielen Dank schon mal.
|
|
|
|
Hallo MadHatter,
> Berechne den Grenzwert
>
> [mm]\limes_{n\rightarrow\infty} \summe_{k=1}^{n} |e^{\bruch{ikx}{n}}[/mm]
> - [mm]e^{\bruch{i(k-1)x}{n}}|[/mm]
> k € {1...n}
> Mahlzeit.
>
> Ich besitze eine Lösung zu dieser Aufgabe, welche ich bis
> auf einen Punkt nachvollziehe und verstehe. Mein Problem
> ist ein Umformungsschritt den ich nach vielen Versuchen
> nicht hinbekomme. Der vorgeschlagene Lösungsweg sieht so
> aus:
>
> [mm]|e^{\bruch{ikx}{n}}[/mm] - [mm]e^{\bruch{i(k-1)x}{n}}|^{2}[/mm] =
> [mm]|e^{\bruch{i(k-1)x}{n}}|^{2} *|e^{\bruch{ix}{n}}-1|^{2}[/mm] =
> [mm](cos(x/n)-1)^{2}+(sin(x/n))^{2}[/mm] = 2-2cos(x/n)
> ... noch zweimal l'Hospital und Ergebnis ist x
>
> Der Schritt von der e-Funktion zu den trigonometrischen ist
> mir ein totales Mysterium. Könnte mir bitte jemand
> erklären wie die Umformung an der Stelle gemacht wurde?
Nun, es gilt doch [mm]e^{i\cdot{}\varphi}=\cos(\varphi)+i\cdot{}\sin(\varphi)[/mm]
Außerdem ist für [mm]z=a+bi[/mm] doch [mm]|z|=\sqrt{a^2+b^2}[/mm], also [mm]|z|^2=a^2+b^2[/mm]
Damit ist schnell einzusehen, dass der erste Betrag =1 ist.
Den zweiten forme mal um und rechne das mal nach ...
> Dann könnte ich mich endlich wieder auf andere Aufgaben
> voll konzentrieren.
> Vielen Dank schon mal.
>
Gruß
schachuzipus
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:16 Mi 13.03.2013 | Autor: | MadHatter |
Denn Schlag an meine Stirn hättest du bis zu dir hören müssen.
So viel rechnerrei mal wieder für nix.
Mein Fehler war das ich wusste wie man den Betrag von e^bla umschreibt in was trigonometrisches ich aber nicht die Umformung als Betrag einer komplexen Zahl gesehen habe.
Vielen Dank für den Wink mit dem ganzen Zaun.
|
|
|
|