www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Grenzwert einer Reihe
Grenzwert einer Reihe < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:38 Di 03.11.2015
Autor: kai1992

Guten Abend zusammen,ich würde gerne den Grenzwert der Reihe
[mm] \sum_{n =0}^\infty[/mm]  [mm] {n+k \choose n} [/mm][mm] *(i/2)^n [/mm]
berechnen.
Das sieht in gewisser Weise aus wie die Binomialreihe, aber demnach würde ja [mm] (1+i/2)^{n+k} [/mm] herauskommen und das stimmt aber nicht?

Liebe Grüße,
Kai

Ich habe diese Frage auf keiner anderen Seite gestellt.

        
Bezug
Grenzwert einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 09:00 Mi 04.11.2015
Autor: Leopold_Gast

Differenziere [mm]\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n[/mm] insgesamt [mm]k[/mm]-mal:

[mm]\frac{k!}{(1-x)^{k+1}} = \sum_{n=0}^{\infty} \frac{(n+k)!}{n!} x^n[/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]