Grenzwert einer Funktion < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:48 Di 28.06.2005 | Autor: | Marcin |
hi, ich hab in meinem mathe-repetitorium ne recht fiese funktion, deren grenzwert ich bisher nicht bestimmen konnte:
[mm] \limes_{x\rightarrow 0}(\bruch{sin(x)}{x})^{(\frac{sin(x)}{x(1-cos(x)})} [/mm]
ich komm noch nicht so recht mit dem TeX klar.. die erste klammer sollt was größer sein, es ist eine funktion vom typ [mm] f(x)^{g(x)}- [/mm] hoffe, ihr versteht, worauf ich hinaus will.
habe das ganze als grenzwert von der form '1 hoch unendlich' eingestuft, dann die exponentielle identität angewendet und bin auf ne recht grosse ableitung gekommen (kann bei bedarf zwischenergebnisse posten, aber die terme sind tierisch lang und ich komm wie gesagt mit dem TeX noch nicht ganz klar), die aus 2 grossen summanden besteht (hab die produktregel beim ableiten angewendet), von denen einer wegen eines enthaltenen ln(1) gegen 0 strebt. aber das weitere vereinfachen klappt nicht - das ergebnis soll [mm] e^{\frac {-1}{3}} [/mm] sein, aber ich komm beim besten willen nicht drauf, hab andauernd irgendwelche trigonometrischen funktionen drin, die selbst bei mehrfachem anwenden von de l'Hospital nicht verschwinden - evtl. hab ich irgend ein additionstheorem übersehen. wäre nett, wenn sich in den nächsten tagen jemand der sache annehmen könnte.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 16:04 Mi 29.06.2005 | Autor: | Marcin |
danke für deine antwort. ich konnte alle schritte nachvollziehen, hab auch meinen fehler gefunden - direkt beim umformen in eine e-funktion habe ich den kehrwert des ersten bruches genommen, ich habe die identität namlich als [mm] f(x)^{g(x)} [/mm] = [mm] e^{\frac{ln(f(x))}{1/g(x)}} [/mm] gelernt und dann vergessen, vom nenner den kehrwert zu bilden.
ich komme dann allerdings beim rechnen nicht wirklich weiter: ich habe den grenzwert einmal nach l'H abgeleitet und erhalte:
[mm] \limes_{x \rightarrow 0}\bruch{\ln[\sin(x)] - \ln(x)}{1-\cos(x)} [/mm] = [mm] \limes_{x \rightarrow 0}\bruch{\bruch{1}{sin(x)} * cos(x)- \bruch{1}{x}}{sin(x)}
[/mm]
hier habe ich nun verschiedene wege ausprobiert, das ganze abzuleiten (den ersten teil als cotangens schreiben, alles in mehrere brüche aufteilen etc.), komme jedoch auf kein brauchbares ergebnis. besoders der term mit 1/x macht mir sorgen, denn kein ableiten würde für x->0 etwas anderes als eine 0 in den nenner bringen, und vereinigen der nenner brachte [mm] \bruch{1}{x sin(x)}, [/mm] was bei mir nach l'H abgeleitet [mm] \bruch{0}{sin(x)+x cos(x)} [/mm] ergibt, was wiederrum gegen 0 strebt.
|
|
|
|
|
Hallo Marcin!
> [mm]\limes_{x \rightarrow 0}\bruch{\ln[\sin(x)] - \ln(x)}{1-\cos(x)}[/mm] = [mm]\limes_{x \rightarrow 0}\bruch{\bruch{1}{sin(x)} * cos(x)- \bruch{1}{x}}{sin(x)}[/mm]
Soweit richtig ...
Fasse doch zunächst einmal den Zähler als einen Bruch zusammen (entsprechend erweitern auf den Hauptnenner [mm] $x*\sin(x)$ [/mm] ).
Anschließend den Nenner des oberen Bruches in den Gesamtnenner ziehen.
Damit erhältst Du dann einen "normalen" Bruch, dem Du dann nochmal mit de l'Hospital zu Leibe rücken musst.
Gruß vom
Roadrunner
|
|
|
|