Grenzwert Komplexes Polynom < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:31 Do 26.01.2012 | Autor: | qsxqsx |
Hallo!,
[mm] \bruch{1}{\tau*s + 1} [/mm] ist ein Tiefpass 1. Ordnung. [mm] \bruch{1}{\tau*s + 1}*\bruch{1}{ s} [/mm] ist die Sprungantwort des Tiefpasses im Laplaceraum. Wennde ich nun den Tiefpass n mal an und lasse n gegen unendlich gehen, wobei ich [mm] \tau [/mm] durch n teile, erhalte ich einen Grenzwert und zwar dass die Sprungfunktion um [mm] \tau [/mm] verschoben wird.
[mm] \limes_{n\rightarrow\infty}(\bruch{1}{\bruch{\tau*s}{n}+ 1})^{n}*\bruch{1}{s} [/mm] = [mm] e^{-\tau*s}*\bruch{1}{s}
[/mm]
Jetzt frage ich mich natürlich wie das aussieht bei einem System 2. Ordnung welches Schwingen kann und eine Resonanzfrequenz w besitzt.
[mm] \limes_{n\rightarrow\infty}(\bruch{1}{(\bruch{\tau*s}{n*w})^{2} + \bruch{2*d*s*\tau}{w*n} + 1})^{n}*\bruch{1}{s} [/mm] = ?
, wobei w die Resonanzfrequenz und d die Dämpfung des Systems ist. Für d = 0 hab ich den Grenzwert 1 erhalten.
Für d [mm] \not= [/mm] 0 weiss ich nicht wie man den Grenzwert findet. Ich kann das Polynom in zwei Faktoren zerlegen, nur sind die dann Komplex. Und ich weiss nicht ob ich dann [mm] \limes_{n\rightarrow\infty} (\bruch{1}{1 + x/n}
[/mm]
[mm] )^{n} [/mm] = [mm] e^{-x} [/mm] für komplexe x benutzen darf? Hab auch schon anderes Probiert aber komm nicht drauf.
Danke!
Grüsse
|
|
|
|
> Hallo!,
>
> [mm]\bruch{1}{\tau*s + 1}[/mm] ist ein Tiefpass 1. Ordnung.
> [mm]\bruch{1}{\tau*s + 1}*\bruch{1}{ s}[/mm] ist die Sprungantwort
> des Tiefpasses im Laplaceraum. Wennde ich nun den Tiefpass
> n mal an und lasse n gegen unendlich gehen, wobei ich [mm]\tau[/mm]
> durch n teile, erhalte ich einen Grenzwert und zwar dass
> die Sprungfunktion um [mm]\tau[/mm] verschoben wird.
>
> [mm]\limes_{n\rightarrow\infty}(\bruch{1}{\bruch{\tau*s}{n}+ 1})^{n}*\bruch{1}{s}[/mm]
> = [mm]e^{-\tau*s}*\bruch{1}{s}[/mm]
>
> Jetzt frage ich mich natürlich wie das aussieht bei einem
> System 2. Ordnung welches Schwingen kann und eine
> Resonanzfrequenz w besitzt.
>
> [mm]\limes_{n\rightarrow\infty}(\bruch{1}{(\bruch{\tau*s}{n*w})^{2} + \bruch{2*d*s*\tau}{w*n} + 1})^{n}*\bruch{1}{s}[/mm]
> = ?
> , wobei w die Resonanzfrequenz und d die Dämpfung des
> Systems ist. Für d = 0 hab ich den Grenzwert 1 erhalten.
> Für d [mm]\not=[/mm] 0 weiss ich nicht wie man den Grenzwert
hallo,
ich komme auf
[mm] exp(\frac{-2\delta*s*\tau}{\omega}).
[/mm]
dazu schreibst du statt [mm] (\frac{1}{f(n)})^n
[/mm]
[mm] e^{-ln(f(n)*n)}
[/mm]
das wird [mm] 0*\infty [/mm] bringen, also de l'hopital anwenden.. dazu besser das n in den nenner bringen und dann kürzt sich vieles raus
> findet. Ich kann das Polynom in zwei Faktoren zerlegen, nur
> sind die dann Komplex. Und ich weiss nicht ob ich dann
> [mm]\limes_{n\rightarrow\infty} (\bruch{1}{1 + x/n}[/mm]
> [mm])^{n}[/mm] =
> [mm]e^{-x}[/mm] für komplexe x benutzen darf? Hab auch schon
> anderes Probiert aber komm nicht drauf.
>
> Danke!
>
> Grüsse
gruß tee
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:53 Do 26.01.2012 | Autor: | qsxqsx |
Danke! Ich komme aufs gleiche...
(Du hast aber ausversehen -ln(f(n)*n) anstelle von -ln(f(n))*n geschrieben)
Gruss
|
|
|
|