www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Grenzwert, Integral
Grenzwert, Integral < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert, Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:35 Mi 14.02.2007
Autor: sandra.inf

Aufgabe
Folgender Grenzwert ist zu berechnen:
[mm] \limes_{x\rightarrow\ 0} \bruch{1}{x} \integral_{x}^{2x}{\bruch{cos t}{1 + t^2} dt} [/mm]

Hallo,

ich hab folgendes Problem mit obiger Aufgabe:

Man sollte da mit l'Hospital rangehen, also:
f(x) := [mm] \integral_{x}^{2x}{\bruch{cos t}{1 + t^2} dt} [/mm]
g(x) := x

Also steht das ganze in der Form [mm] \bruch{f(x)}{g(x)} [/mm]

Weiter gilt für x -> 0:
g(x) -> 0 sowie
f(x) -> 0 ?... aber wie zum Henker zeige ich das? Ich brauch das ja als Voraussetzung um l'Hospital überhaupt anwenden zu können :(

(Die Anwendung von l'Hospital ist danach nicht mehr das Problem, ich krieg als Grenzwert 1 raus.)

Danke für jede Hilfe ;)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwert, Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 12:52 Mi 14.02.2007
Autor: angela.h.b.


> Folgender Grenzwert ist zu berechnen:
> [mm]\limes_{x\rightarrow\ 0} \bruch{1}{x} \integral_{x}^{2x}{\bruch{cos t}{1 + t^2} dt}[/mm]
>  
> Hallo,
>  
> ich hab folgendes Problem mit obiger Aufgabe:
>  
> Man sollte da mit l'Hospital rangehen, also:
>  f(x) := [mm]\integral_{x}^{2x}{\bruch{cos t}{1 + t^2} dt}[/mm]
>  
> g(x) := x
>  
> Also steht das ganze in der Form [mm]\bruch{f(x)}{g(x)}[/mm]
>  
> Weiter gilt für x -> 0:
>  g(x) -> 0 sowie

>  f(x) -> 0 ?... aber wie zum Henker zeige ich das? Ich

> brauch das ja als Voraussetzung um l'Hospital überhaupt
> anwenden zu können :(


Hallo,

[mm] \limes_{x\rightarrow 0}f(x)=\integral_{0}^{0}{\bruch{cos t}{1 + t^2} dt}=0 [/mm]

>  
> (Die Anwendung von l'Hospital ist danach nicht mehr das
> Problem, ich krieg als Grenzwert 1 raus.)

Ja???
Ich habe eben 0 ausgerechnet.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]