www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwert - Folge
Grenzwert - Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert - Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 04:49 Mo 27.09.2010
Autor: mbohrer

Aufgabe
Gegeben ist die Folge [mm] \left ( a_n \right) [/mm] die durch [mm] a_{n+1} = \bruch {1}{2} \left (a_n + a_{n-1} \right) [/mm] definiert wird.
Zeigen Sie dass, [mm] \lim_{n\ to\ infty}a_n = \bruch {1}{3} \left (a_1 + 2a_2 \right) [/mm].
Gegeben ist 0 < [mm] a_1 [/mm] < [mm] a_2 [/mm].

Hallo!

Ich habe schon gezeigt dass, die [mm] a_{2k-1} [/mm] monoton wachsen sind und die [mm] a_{2k} [/mm] sinken.
Leicht kann man auch sehen dass, [mm] a_{2k} [/mm] > [mm] a_{2k-1} [/mm]. Beide sind begrenzt. Daraus kriegt man Sup [mm] a_{2k-1} [/mm]  = Inf  [mm] a_{2k} [/mm].
Also [mm] \left (a_n \right) [/mm] konvergiert.
Weiter kann ich leider nicht. Wie kann man dieses Limit berechenen?

Danke!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwert - Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 07:55 Mo 27.09.2010
Autor: leduart

Hallo
du hast ne Art Intervallschachtelung innerhalb des Intervalls [a1,a2], also kannst du a1=0 und a2=1 waehlen
dann zeichne es dir auf, du hast die Folge 1/2, 1/2+1/4, 1/2+1/4-1/8=1/2+1/8, 1/2+1/8+1/16-1/32=1/2+1/8+1/32, dann +1/128 usw. also ne geometrische Reihe.
das Intervall verschieben oder (und) vergroessern sollte dann leicht sein.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]