Grenzwert < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:25 Sa 17.06.2006 | Autor: | Phoney |
Hallo.
Ich habe eine Frage zum Thema Grenzwert an Hand folgender Aufgabe/Lösung:
[mm] $\limes_{x\rightarrow0} \br{sin(2x)}{x}= \limes_{x\rightarrow0} 2\br{sin(2x)}{2x} [/mm] = 2 [mm] \limes_{2x\rightarrow0} \br{sin(2x)}{2x}=2$
[/mm]
Und wie omme ich da jetzt auf die Lösung? Mich stört unten das 2x. Denn in diesem Falle würde 2x ja gegen null gehen und dann hätte ich da so einen ausdruck wie 1/0, also läuft gegen unendlich.
Wie kommt man also auf die 2?
|
|
|
|
[mm]\limes_{x\rightarrow0} \br{sin(2x)}{x}= \limes_{x\rightarrow0} 2\br{sin(2x)}{2x} = 2 \limes_{2x\rightarrow0} \br{sin(2x)}{2x}=2[/mm]
du lässt 2x gegen null laufen, aber du setzt es nicht gleich null, denn null im nenner bedeutet immer, dass die aufgabe nicht lösbar ist. also läuft dein bruch gegen eine zahl zwischen 1 und 0. wenn du das ergebnis dann mal 2 nimmst (vor dem limes stht noch die 2) dann läuft dein grenzwert gegen 2
hoffe dir damit weitergeholfen zu haben. wenn nicht, kannst du ruhig nochmal fragen.
liebe grüße marina
|
|
|
|
|
Hallo Johann,
>
> Ich habe eine Frage zum Thema Grenzwert an Hand folgender
> Aufgabe/Lösung:
>
> [mm]\limes_{x\rightarrow0} \br{sin(2x)}{x}= \limes_{x\rightarrow0} 2\br{sin(2x)}{2x} = 2 \limes_{2x\rightarrow0} \br{sin(2x)}{2x}=2[/mm]
>
> Und wie omme ich da jetzt auf die Lösung? Mich stört unten
> das 2x. Denn in diesem Falle würde 2x ja gegen null gehen
> und dann hätte ich da so einen ausdruck wie 1/0, also läuft
> gegen unendlich.
>
> Wie kommt man also auf die 2?
rechne mal für ein paar Zahlen 0<x<1 jeweils [mm] \sin(2x) [/mm] und 2x aus und du wirst sehen, dass beide um so näher bei einander liegen, je kleiner x ist: der Grenzwert [mm] $\limes_{2x\rightarrow0} \br{sin(2x)}{2x}$ [/mm] ist gleich 1.
Jetzt klar(er)?
Gruß informix
|
|
|
|