Green < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 16:33 Sa 30.07.2011 | Autor: | mikexx |
Aufgabe | Hallo, liebe Helferinnen & Helfer!
Ich benötige mal wieder Eure Hilfe!
Die Aufgabe:
Sei [mm]A\subset\mathbb R^n[/mm] ein Kompaktum mit glattem Rand. Angenommen, [mm]\partial A[/mm] ist wegzusammenhängend, also das Bild einer geschlossenen (stetig differenzierbaren) Kurve [mm]\alpha[/mm]. Wir nehmen an, daß [mm]\alpha[/mm] den Rand von A gegen den Uhrzeigersinn durchläuft, daß also A immer links von [mm]\alpha[/mm] liegt. Sei [mm]f=(f_1,f_2)[/mm] ein [mm]C^1[/mm] - Vektorfeld. Zeigen Sie mit Hilfe des Gaußschen Integralsatzes, daß:
[mm]\int_{A}rotf=\int_{\alpha}f[/mm], wobei [mm]rotf:=\frac{\partial f_2}{\partial x}-\frac{\partial f_1}{\partial y}[/mm], also
[mm]\int_{A}\left(\frac{\partial f_2}{\partial x}-\frac{\partial f_1}{\partial y}\right)d(x,y)=\int_{\alpha}f_1dx+f_2dy[/mm]. |
Ich habe darüber ein bisschen schon nachgedacht und bin (bis jetzt) zu Folgendem gekommen:
Zunächst gilt doch mit der orthogonalen Matrix
[mm]M:=\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}[/mm], daß
[mm]\int_A \left(\frac{\partial f_2}{\partial x}-\frac{\partial f_1}{\partial y}\right)=\int_A \operatorname{div}(Mf)=\int_{\partial A} dS[/mm], wobei hier v der äußere Einheitsnormalenvektor sein soll. Hier wird der Integralsatz von Gauß angewandt.
Jetzt steht ich ein bisschen auf dem Schlauch!
Insbesondere frage ich mich, ob es relevant ist, dass die Kurve [mm]\alpha[/mm] den Rand gegen den Uhrzeigersinn parametrisiert.
Intuitiv würde ich jetzt so weiter machen, wobei ich nicht genau weiß, ob vor das Integral eventuell ein Minus gehört (wegen "gegen den Uhrzeigersinn"):
[mm] = \int_{\alpha}<(Mf)(\alpha(t)),v(\alpha(t))> dt[/mm]
Weiter gilt meiner Meinung nach:
[mm]v(\alpha(t))=M\alpha'(t) [/mm], da ja der äußere Einheitsnormalenvektor sozusagen durch eine 90 Grad - Drehung aus dem Tangentialvektor [mm]\alpha'(t)[/mm] hervorgeht. Auch hier bin ich mir nicht sicher! Denn der Tangentialvektor ist ja nicht normiert, der äußere Einheitsnormalenvektor schon, also reicht wohl schlichtes Drehen nicht aus, um aus dem Tangentialvektor den äußeren Einheitsnormalenvektor zu erhalten...
Weiter würde ich dann - wenn ich diese offenen Fragen mal außer Betracht lasse - die Behauptung erhalten, denn der Integrand (das Skalarprodukt) ist ja nichts Anders als
[mm]f_2(\alpha(t))\alpha_2'(t)+f_1(\alpha(t))\alpha_1'(t)[/mm] und das Kurvenintegral einer Pfaffschen Form ist ja gerade so definiert.
Wer kann bitte für mehr Klarheit sorgen?
Vielen Dank für jede Mühe!
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:20 Mo 01.08.2011 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|