www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Gradient
Gradient < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gradient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:24 So 28.06.2009
Autor: gabis_kind

Aufgabe
Es sei f : (0, [mm] \infty)² \to \IR, [/mm] de finiert durch f(x,y) = [mm] \wurzel{xy}. [/mm] Für c > 0 heißt [mm] f^{-1} [/mm] ({c}) =
{(x,y): f(x,y)=c} die Höhenlinie zum Niveau c.
Zeigen Sie, dass in jedem Punkt in [mm] (0,\infty)² [/mm] gilt:
"Gradient [mm] \perp [/mm] Höhenlinie", d.h. der Gradient und die Tangente an die betre ffende Höhenlinie stehen senkrecht aufeinander.

Kann ich dies folgendermaßen zeigen?

x= (x,y) [mm] \in [/mm] T [mm] \gdw [/mm] df=0 [mm] \gdw [/mm] df = grad [mm] {f(c)}^T [/mm] (x-c) = 0




Ich habe diese Aufgabe in keinem anderen Forum gestellt.

        
Bezug
Gradient: Antwort
Status: (Antwort) fertig Status 
Datum: 22:16 So 28.06.2009
Autor: pelzig

Dein Beweis ist absolut unklar... Du musst die Kettenregel benutzen: Sei [mm] $c\in f(\IR^2)$ [/mm] und sei [mm] $\gamma:[0,1]\to \IR^2$ [/mm] ein differenzierbarer Weg in [mm] $f^{-1}(c)$, [/mm] d.h. [mm] $f(\gamma(t))=c$ [/mm] für alle [mm] $t\in[0,1]$. [/mm] Dann folgt aus der Kettenregel [mm] $$\underbrace{df(\gamma(t))}_{\operatorname{grad}f\big|_{\gamma(t)}}\cdot\ d\gamma(t)=0$$ [/mm] und [mm] $d\gamma(t)$ [/mm] ist die Richtung der Tangenten von [mm] $\gamma$ [/mm] an der Stelle [mm] $\gamma(t)$. [/mm]

Gruß, Robert

Bezug
                
Bezug
Gradient: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:50 Mo 29.06.2009
Autor: gabis_kind

Vielen Dank für deine Hilfe!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]