www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Gleichungssysteme
Gleichungssysteme < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungssysteme: Tipp
Status: (Frage) beantwortet Status 
Datum: 12:19 Mo 21.02.2011
Autor: RWBK

Aufgabe
x1-1=x2+x3+x4 Geben Sie sämtliche Lösungen der gerade genannten Gleichung an

Hallo,

hierzu habe ich folgende Frage : Bei dieser Aufgabe habe ich drei beliebige Lösungen für x2+x3+x4 oder etwa nicht denn

x1-1=x2+x3+x4
x1=x2+x3+x4+1 wobei dann x2+x3+x4 bliebig sind oder etwa nicht. Was ich mich jetzt frage wie kann ich sowas vernünftig aufschreiben?

Mit freundlichen Grüßen
RWBK

        
Bezug
Gleichungssysteme: Antwort
Status: (Antwort) fertig Status 
Datum: 12:29 Mo 21.02.2011
Autor: fred97


> x1-1=x2+x3+x4 Geben Sie sämtliche Lösungen der gerade
> genannten Gleichung an
>  Hallo,
>  
> hierzu habe ich folgende Frage : Bei dieser Aufgabe habe
> ich drei beliebige Lösungen für x2+x3+x4 oder etwa nicht
> denn
>  
> x1-1=x2+x3+x4
>  x1=x2+x3+x4+1 wobei dann x2+x3+x4 bliebig sind



Besser:

[mm] x_2, x_3 [/mm] und [mm] x_4 [/mm] sind beliebig.


> oder etwa
> nicht. Was ich mich jetzt frage wie kann ich sowas
> vernünftig aufschreiben?


Setze [mm] r:=x_2, s:=x_3 [/mm] und [mm] t:=x_4. [/mm]

Dann ist [mm] \vektor{x_1 \\ x_2 \\ x_3 \\ x_4} [/mm]  eine Lösung des obigen LGS   [mm] \gdw [/mm]

[mm] $\vektor{x_1 \\ x_2 \\ x_3 \\ x_4} \in \{ \vektor{1\\ 0 \\ 0 \\ 0}+r*\vektor{1 \\ 1 \\ 0 \\ 0}+s*\vektor{1 \\ 0\\ 1 \\ 0}+t*\vektor{1 \\ 0\\ 0 \\ 1}: r,s,t \in \IR \}$ [/mm]

FRED

>
> Mit freundlichen Grüßen
>  RWBK


Bezug
        
Bezug
Gleichungssysteme: Antwort
Status: (Antwort) fertig Status 
Datum: 15:24 Mo 21.02.2011
Autor: Integral_keks

[mm] x_1= \mathbb{L}\{x1=1+x_2+x_3+x_4|x_2,x_3,x_4\in \mathbb{R} \quad beliebig\} [/mm]

Bezug
                
Bezug
Gleichungssysteme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:39 Mo 21.02.2011
Autor: fred97


> [mm]x_1= \mathbb{L}\{x1=1+x_2+x_3+x_4|x_2,x_3,x_4\in \mathbb{R} \quad beliebig\}[/mm]

Mit Verlaub, aber das ist großer Unfug !

Links steht [mm] x_1, [/mm] dann kommt rechts eine Menge (!) , in der wieder [mm] x_1 [/mm] steht  ???

FRED

>  


Bezug
                        
Bezug
Gleichungssysteme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:59 Mo 21.02.2011
Autor: Integral_keks

Uupss, da war ich zu schnell...stimmt, ohne [mm] x_1 [/mm] rechts in der Menge, ersetzen durch [mm] 1+x_2+x_3+x_4...natürlich [/mm] der andere Lösungsvorschlag war besser von fred97. Da bleibt nur die Frage offen, ob ihr schon mit den Vektoren gearbeitet habt und die Schreibweise von fred97 echt verständlich ist.

Bezug
        
Bezug
Gleichungssysteme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:56 Sa 26.02.2011
Autor: RWBK

Aufgabe
Gegeben sei das lineare Gleichungssystem
[mm] x_{1}+x_{2}+2x_{3}-2x_{4}=10 [/mm]
[mm] 2x_{2}+x_{3}+x_{4}=8 [/mm]

Hallo,

hier st mal meine vorgehensqweise, ich hab 4 Unbekannte und Gleichungen 2 Ranges das hieße ja ich kann 2 Unbekannte freiwählen.

Sagen wir mal [mm] x_{3}=\alpha [/mm] und [mm] x_{4}=\beta [/mm] das macht für mich noch sinn das hat mein Lehrer auch noch so ähnlich geschrieben in der schule, dann schreibt er dahin [mm] x_{2}=-1/2*(\alpha+\beta) [/mm] wie kommt er denn da drauf??

MFG
RWBK

Bezug
                
Bezug
Gleichungssysteme: Antwort
Status: (Antwort) fertig Status 
Datum: 12:11 Sa 26.02.2011
Autor: MathePower

Hallo RWBK,

> Gegeben sei das lineare Gleichungssystem
>  [mm]x_{1}+x_{2}+2x_{3}-2x_{4}=10[/mm]
>  [mm]2x_{2}+x_{3}+x_{4}=8[/mm]
>  Hallo,
>  
> hier st mal meine vorgehensqweise, ich hab 4 Unbekannte und
> Gleichungen 2 Ranges das hieße ja ich kann 2 Unbekannte
> freiwählen.
>  
> Sagen wir mal [mm]x_{3}=\alpha[/mm] und [mm]x_{4}=\beta[/mm] das macht für
> mich noch sinn das hat mein Lehrer auch noch so ähnlich
> geschrieben in der schule, dann schreibt er dahin
> [mm]x_{2}=-1/2*(\alpha+\beta)[/mm] wie kommt er denn da drauf??


Wenn obiges Gleichungssystem stimmt,
dann hat Dein Lehrer sich da verschrieben,
denn es muss heißen:

[mm]x_{2}=\blue{4}-1/2*(\alpha+\beta)[/mm]

Diese Lösung erhältst Du, wenn Du

[mm]2x_{2}+x_{3}+x_{4}=8[/mm]

nach [mm]x_{2}[/mm] auflöst und [mm]x_{3}=\alpha, \ x_{4}=\beta[/mm] setzt.


>  
> MFG
>  RWBK



Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]