www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Gewichtsraumzerlegung
Gewichtsraumzerlegung < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gewichtsraumzerlegung: Rückfrage
Status: (Frage) überfällig Status 
Datum: 20:10 Di 25.08.2015
Autor: Topologe

Aufgabe
Sei L = [mm] sl(n,\IC) [/mm] für n [mm] \ge [/mm] 2. Betrachten Sie die Unteralgebra [mm] H=span\{e_{11}-e_{22}\}. [/mm] Finden Sie den Gewichtsraum [mm] L_{0} [/mm] = [mm] C_{L}(H) [/mm] und bestimmen Sie die Gewichtsraumzerlegung
L = [mm] L_{0} \oplus(\oplus_{\alpha \in \Phi} L_{\alpha}) [/mm]


Hallihallo :-)

Bin grad bei meiner Prüfungsvorbereitung auf diese Aufgabe gestoßen und wollte dies mal mit n=2 durchspielen.

Ok, [mm] sl(2,\IC)=span\{h,x,y\}=span\{\pmat{ 1 & 0 \\ 0 & -1 },\pmat{ 0 & 0 \\ 1 & 0},\pmat{0 & 1 \\ 0 & 0}\} [/mm]
[mm] H=span\{h\} [/mm]

[mm] C_{L}(H)=\{a \in L | [a,h]=0\} [/mm] = H = [mm] \pmat{ 1 & 0 \\ 0 & -1} [/mm] = [mm] L_{0} [/mm]

Außerdem gilt: [h,x]=-2x, [h,y]=2y

Bestimmung der Gewichte:

Sei [mm] h=\pmat{a_{1} & 0 \\ 0 & a_{2}} \in [/mm] H
[mm] [h,x]=[h,e_{21}]=he_{21}-e_{21}h=(a_{2}-a_{1})e_{21}=-2x [/mm]
[mm] [h,y]=[h,e_{12}]=(a_{1}-a_{2})e_{12}=2y [/mm]
Also Gewichte: (ad [mm] h)(e_{ij})=[h,e_{ij}]=(\epsilon_{i}-\epsilon_{j})(h)e_{ij} [/mm] mit [mm] \epsilon_{i}: [/mm] H [mm] \rightarrow \IC, \pmat{a_{1} & 0 \\ 0 & a_{2}} \longmapsto a_{\epsilon} [/mm]

Also [mm] (\epsilon_{i}-\epsilon_{j}) \in H^{\*} [/mm] Gewicht mit Gewichtsraum [mm] L_{ij}=\{w \in sl(2,\IC)|(ad h)(w)=(\epsilon_{i}-\epsilon_{j})(h)(w), \forall h \in H\}=span\{e_{ij}\} [/mm]

Also Gewichtsraumzerlegung:

[mm] \pmat{1 & 0 \\ 0 & -1} \oplus \pmat{0 & 0 \\ 1 & 0} \oplus \pmat{0 & 1 \\ 0 & 0} [/mm]

Wär das so ok?

LG

        
Bezug
Gewichtsraumzerlegung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Fr 28.08.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]