www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Gauss-Klammer
Gauss-Klammer < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gauss-Klammer: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:36 So 20.01.2008
Autor: kobo

Aufgabe
Für x [mm] \in \IR [/mm] bezeichne [x] die größte ganze Zahl, die kleiner oder gleich x ist.

Beweisen Sie: Ist [mm] x_{0} \in \IR [/mm] \ [mm] \IZ [/mm] und [mm] (x_{n}) [/mm] eine gegen [mm] x_{0} [/mm] konvergente Folge, so gibt es ein N [mm] \in \IN [/mm] mit [mm] [x_{n}] [/mm] = [mm] [x_{0}] [/mm] für alle n [mm] \ge [/mm] N.

Hinweis: Zeigen Sie, dass es ein N [mm] \in \IN [/mm] gibt mit [mm] [x_{0}] [/mm] < [mm] x_{n} [/mm] < [mm] [x_{0}+1] [/mm] für alle n [mm] \ge [/mm] N.

Wie gehe ich nun an dieses Problem heran? Was bewiesen werden soll habe ich verstanden, und mir erscheint das auch alles logisch... nur wie beweise ich sowas?

Ich bedanke mich schonmal für die Hilfe :)

Mit freundlichen Grüßen


        
Bezug
Gauss-Klammer: Antwort
Status: (Antwort) fertig Status 
Datum: 23:49 So 20.01.2008
Autor: ullim

Hi kobo,

da die Folge [mm] x_n [/mm] konvergent gegen [mm] x_0 [/mm] ist gibt es ein N [mm] \in \IN [/mm] mit

[mm] |x_n [/mm] - [mm] x_0| [/mm] < [mm] \epsilon [/mm] für jedes [mm] \epsilon [/mm] > 0 also

- [mm] \epsilon [/mm] < [mm] x_n [/mm] - [mm] x_0 [/mm] < [mm] \epsilon [/mm] also

[mm] x_0 [/mm] - [mm] \epsilon [/mm] < [mm] x_n [/mm] < [mm] x_0 [/mm] + [mm] \epsilon [/mm]

Es gilt [mm] x_{0} \in \IR [/mm] \ [mm] \IZ, [/mm] also kann man [mm] \epsilon [/mm] so wählen, das gilt

[mm] [x_0] \le x_0 [/mm] - [mm] \epsilon [/mm] < [mm] x_n [/mm] < [mm] x_0 [/mm] + [mm] \epsilon \le [x_0 [/mm] + 1], d.h. [mm] x_n [/mm] liegt zwischen zwei aufeinander folgenden ganzen Zahlen

also gilt

[mm] [x_n] [/mm] = [mm] [x_0] [/mm]

mfg ullim




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]