Galoisgruppe < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:35 Di 03.04.2007 | Autor: | Maja83 |
Aufgabe | Bestimmen Sie die Galoisgruppe des Polynoms [mm] X^4+1 \in \IQ[X]. [/mm] |
Ich habe mit der Irreduzibilität von f in [mm] \IQ [/mm] angefangen:
X-> X+1: [mm] f(X+1)=x^4+4X^3+6X^2+4X+2. [/mm] Mit Eisenstein und p=2 folgt nun, dass f in [mm] \IQ [/mm] irred. ist. Korrekt?
Nun habe ich gelesen, dass die Nullstellen in [mm] \IC [/mm] die 8.Einheitswurzeln sind.. Das verstehe ich aber leider nicht so ganz.. Kann mir das jemand erklären?
[mm] f(X)=X^4+1=(X-\wurzel{i})(X+\wurzel{i})(X-i \wurzel{i})(X+i \wurzel{i}). [/mm]
Ist der Zerfällungskörper dann einfach: L= [mm] \IQ(\varepsilon) [/mm] mit [mm] \varepsilon=8.Einheitswurzel?
[/mm]
Wie gehts nun weiter?
Ich danke euch für eure Hilfe!
Maja
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:57 Mi 04.04.2007 | Autor: | Micha |
Hallo Maja!
> Bestimmen Sie die Galoisgruppe des Polynoms [mm]X^4+1 \in \IQ[X].[/mm]
>
> Ich habe mit der Irreduzibilität von f in [mm]\IQ[/mm] angefangen:
>
> X-> X+1: [mm]f(X+1)=x^4+4X^3+6X^2+4X+2.[/mm] Mit Eisenstein und p=2
> folgt nun, dass f in [mm]\IQ[/mm] irred. ist. Korrekt?
>
> Nun habe ich gelesen, dass die Nullstellen in [mm]\IC[/mm] die
> 8.Einheitswurzeln sind.. Das verstehe ich aber leider nicht
> so ganz.. Kann mir das jemand erklären?
>
> [mm]f(X)=X^4+1=(X-\wurzel{i})(X+\wurzel{i})(X-i \wurzel{i})(X+i \wurzel{i}).[/mm]
>
> Ist der Zerfällungskörper dann einfach: L= [mm]\IQ(\varepsilon)[/mm]
> mit [mm]\varepsilon=8.Einheitswurzel?[/mm]
>
> Wie gehts nun weiter?
>
Die Nullstellen des oben genannten Polynoms sind nicht alle 8. Einheitswurzeln.
Eine n-te Einheitswurzel ist eine Nullstelle des Polynoms [mm] $X^n-1$. [/mm] Mit etwas Theorie weiss man, dass dieses Polynom
für n=8 die Zerlegung [mm] $X^8-1= (X^4+1)(X^2+1)(X+1)(X-1)$ [/mm] besitzt.
Wobei man mit [mm] $X^4+1$ [/mm] das 8. Kreisteilungspolynom bezeichnet.
Wenn man sich die komplexen Nullstellen in der komplexen Ebene einzeichnet, liegen diese auf dem Einheitskreis
und unter diesen muss man nunr primitive Einheitswurzeln finden. Ist dann [mm] $\zeta_k [/mm] = [mm] e^{2\pi i /k}$, [/mm] so ist jede
Einheitswurzel primitiv, für die gilt: ggT(k,n)=1. Also die 1,3,5,7.
Kommen wir nun zur Galoisgruppe. Ist $K= [mm] \IQ$ [/mm] der Grundkörper und [mm] $\zeta$ [/mm] eine beliebige primitive n-te Einheitswurzel.
Dann ist [mm] $Gal(K(\zeta))/K)$ [/mm] isomorph zur Einheitengruppe von [mm] $(\IZ [/mm] / n [mm] \IZ)$, [/mm] also hier ist sie isomoprh zur Einheitengruppe von
[mm] $(\IZ [/mm] / 8 [mm] \IZ)$.
[/mm]
Weiterhin hat die Galoisgruppe die Ordnung $4 = [mm] \Phi(8)$, [/mm] sie ist also insbesondere abelsch.
Als Gruppen der Ordnung 4 kommen nur C4 und V4 in Frage. Welche ist nun die Gesuchte?
Vllt. kommst du nun weiter!
Gruß Micha
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 07:44 Mi 04.04.2007 | Autor: | Maja83 |
Hallo Micha!
Vielen Dank für deine Antwort. Leider habe ich das alles noch nicht so ganz verstanden, also habe ich ein paar Fragen:
Wieso ist [mm] X^4+1 [/mm] das 8.te Kreisteilungspolynom? Ist das einfach so definiert worden? Wäre [mm] X^6+1 [/mm] das 12.73 Kreisteilungspolynom?
Mit der Zerlegung [mm] X^8-1 [/mm] arbeitest du nicht weiter, oder?
Wieso muss ich die primitive Einheitswurzeln finden und warum sind diese 1,3,5 und 7, also wie berechne ich da den ggT? n ist ja 8, weil es das 8.te Kreisteilungspolynom ist? Und was ist k?
Wie komme ich auf die Ordnung 4?
Fragen über Fragen..
Ich hoffe auf deine/eure Hilfe!
Liebe Grüße und einen schönen Tag,
Maja
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:24 Mi 04.04.2007 | Autor: | Maja83 |
Hallo Zusammen!
Nachdem ich den ganzen Tag gelernt habe, weiß ich inzwischen wieso [mm] X^4+1 [/mm] das 8.te Kreisteilungspolynom ist und auch warum die Ordnung 4 ist.
Zu den primitiven Einheitswurzeln: Es gilt k<n, also muss ich für n=8 1,2,3,4,5,6 und 7 betrachten.. Da bleibt dann natürlich für den ggt(k,n)=1, nur 1,3,5 und 7. Habe ich das jetzt so richtig gemacht? Wieso bestimme ich die überhaupt, wenn ich doch eh schon weiß, dass [mm] Gal(K(\zeta))/K) [/mm] isomorph zu [mm] (\IZ [/mm] / 8 [mm] \IZ) [/mm] ist?
Wie geht es dann weiter?
Danke für eure Hilfe,
Maja
So
Lieben Dank,
Maja
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:29 Fr 06.04.2007 | Autor: | felixf |
Hallo Maja
> Nachdem ich den ganzen Tag gelernt habe, weiß ich
> inzwischen wieso [mm]X^4+1[/mm] das 8.te Kreisteilungspolynom ist
> und auch warum die Ordnung 4 ist.
Gut.
> Zu den primitiven Einheitswurzeln: Es gilt k<n, also muss
> ich für n=8 1,2,3,4,5,6 und 7 betrachten.. Da bleibt dann
> natürlich für den ggt(k,n)=1, nur 1,3,5 und 7. Habe ich das
> jetzt so richtig gemacht?
Ja.
> Wieso bestimme ich die überhaupt,
> wenn ich doch eh schon weiß, dass [mm]Gal(K(\zeta))/K)[/mm] isomorph
> zu [mm](\IZ[/mm] / 8 [mm]\IZ)[/mm] ist?
Nein, das ist sie nicht, sie ist isomorph zur Einheitengruppe des Ringes [mm] $\IZ/8\IZ$, [/mm] also zu [mm] $(\IZ/8\IZ)^*$. [/mm] Die Einheitengruppe besteht aus den Restklassen von $1, 3, 5, 7$, hat also vier Elemente. Die Frage ist nun, welche Gruppenstruktur die Einheitengruppe hat. Aber das kannst du einfach ueberpruefen: Sobald es eine Einheit gibt, deren Quadrat nicht 1 ist, muss dieses Element Ordnung 4 haben und somit ist die Gruppe zyklisch. Ist jedes Quadrat 1, so muss die Gruppe isomorph zu [mm] $\IZ/2\IZ \times \IZ/2\IZ$ [/mm] sein. (Schliesslich ist jede Gruppe der Ordnung 4 abelsch, und es gibt nur diese beiden Moeglichkeiten.)
(Das meinte Micha uebrigens mit seinem Kommentar ''Als Gruppen der Ordnung 4 kommen nur C4 und V4 in Frage.''; hier ist $C4 = [mm] \IZ/4\IZ$ [/mm] und $V4 = [mm] \IZ/2\IZ \times \IZ/2\IZ$, [/mm] wobei $V4$ auch kleinsche Vierergruppe genannt wird.)
LG Felix
|
|
|
|